1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
#include "Halide.h"
#include "stubtest.stub.h"
using namespace Halide;
using StubNS1::StubNS2::StubTest;
const int kSize = 32;
Var x, y, c;
template<typename Type>
Buffer<Type, 3> make_image(int extra) {
Buffer<Type, 3> im(kSize, kSize, 3);
for (int x = 0; x < kSize; x++) {
for (int y = 0; y < kSize; y++) {
for (int c = 0; c < 3; c++) {
im(x, y, c) = static_cast<Type>(x + y + c + extra);
}
}
}
return im;
}
template<typename InputType, typename OutputType>
void verify(const Buffer<InputType, 3> &input, float float_arg, int int_arg, const Buffer<OutputType, 3> &output) {
if (input.width() != output.width() ||
input.height() != output.height()) {
fprintf(stderr, "size mismatch\n");
exit(-1);
}
int channels = std::max(1, std::min(input.channels(), output.channels()));
for (int x = 0; x < output.width(); x++) {
for (int y = 0; y < output.height(); y++) {
for (int c = 0; c < channels; c++) {
const OutputType expected = static_cast<OutputType>(input(x, y, c) * float_arg + int_arg);
const OutputType actual = output(x, y, c);
if (expected != actual) {
fprintf(stderr, "img[%d, %d, %d] = %f, expected %f\n", x, y, c, (double)actual, (double)expected);
abort();
exit(-1);
}
}
}
}
}
int main(int argc, char **argv) {
constexpr int kArrayCount = 2;
Buffer<uint8_t, 3> buffer_input = make_image<uint8_t>(0);
Buffer<float, 3> simple_input = make_image<float>(0);
Buffer<float, 3> array_input[kArrayCount] = {
make_image<float>(0),
make_image<float>(1)};
std::vector<int> int_args = {33, 66};
// the Stub wants Expr, so make a conversion in place
std::vector<Expr> int_args_expr(int_args.begin(), int_args.end());
// Pass in a set of GeneratorParams: even though we aren't customizing
// the values, we can set the LoopLevel values after-the-fact.
StubTest::GeneratorParams gp;
auto gen = StubTest::generate(
GeneratorContext(get_jit_target_from_environment()),
// Use aggregate-initialization syntax to fill in an Inputs struct.
{
buffer_input, // typed_buffer_input
buffer_input, // untyped_buffer_input
{buffer_input, buffer_input},
Func(simple_input),
{Func(array_input[0]), Func(array_input[1])},
1.25f,
int_args_expr},
gp);
gp.intermediate_level.set(LoopLevel(gen.tuple_output, gen.tuple_output.args().at(1)));
Realization simple_output_realized = gen.simple_output.realize({kSize, kSize, 3});
Buffer<float, 3> s0 = simple_output_realized;
verify(array_input[0], 1.f, 0, s0);
Realization tuple_output_realized = gen.tuple_output.realize({kSize, kSize, 3});
Buffer<float, 3> f0 = tuple_output_realized[0];
Buffer<float, 3> f1 = tuple_output_realized[1];
verify(array_input[0], 1.25f, 0, f0);
verify(array_input[0], 1.25f, 33, f1);
for (int i = 0; i < kArrayCount; ++i) {
Realization array_output_realized = gen.array_output[i].realize({kSize, kSize, 3}, gen.target);
Buffer<int16_t, 3> g0 = array_output_realized;
verify(array_input[i], 1.0f, int_args[i], g0);
}
Realization typed_buffer_output_realized = gen.typed_buffer_output.realize({kSize, kSize, 3});
Buffer<float, 3> b0 = typed_buffer_output_realized;
verify(buffer_input, 1.f, 0, b0);
Realization untyped_buffer_output_realized = gen.untyped_buffer_output.realize({kSize, kSize, 3});
Buffer<float, 3> b1 = untyped_buffer_output_realized;
verify(buffer_input, 1.f, 0, b1);
Realization static_compiled_buffer_output_realized = gen.static_compiled_buffer_output.realize({kSize, kSize, 3});
Buffer<uint8_t, 3> b2 = static_compiled_buffer_output_realized;
verify(buffer_input, 1.f, 42, b2);
for (int i = 0; i < 2; ++i) {
Realization array_buffer_output_realized = gen.array_buffer_output[i].realize({kSize, kSize, 3});
Buffer<uint8_t, 3> b2 = array_buffer_output_realized;
verify(buffer_input, 1.f, 1 + i, b2);
}
printf("Success!\n");
return 0;
}
|