1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
"""
Bilateral histogram.
"""
import halide as hl
@hl.alias(
bilateral_grid_Adams2019={"autoscheduler": "Adams2019"},
bilateral_grid_Mullapudi2016={"autoscheduler": "Mullapudi2016"},
bilateral_grid_Li2018={"autoscheduler": "Li2018"},
)
@hl.generator()
class bilateral_grid:
s_sigma = hl.GeneratorParam(8)
input_buf = hl.InputBuffer(hl.Float(32), 2)
r_sigma = hl.InputScalar(hl.Float(32))
bilateral_grid = hl.OutputBuffer(hl.Float(32), 2)
def generate(self):
g = self
x, y, z, c = hl.vars("x y z c")
# Add a boundary condition
clamped = hl.BoundaryConditions.repeat_edge(g.input_buf)
# Construct the bilateral grid
r = hl.RDom([(0, g.s_sigma), (0, g.s_sigma)])
val = clamped[
x * g.s_sigma + r.x - g.s_sigma // 2,
y * g.s_sigma + r.y - g.s_sigma // 2,
]
val = hl.clamp(val, 0.0, 1.0)
zi = hl.i32(val / g.r_sigma + 0.5)
histogram = hl.Func("histogram")
histogram[x, y, z, c] = 0.0
histogram[x, y, zi, c] += hl.mux(c, [val, 1.0])
# Blur the histogram using a five-tap filter
blurx, blury, blurz = hl.funcs("blurx blury blurz")
blurz[x, y, z, c] = (
histogram[x, y, z - 2, c]
+ histogram[x, y, z - 1, c] * 4
+ histogram[x, y, z, c] * 6
+ histogram[x, y, z + 1, c] * 4
+ histogram[x, y, z + 2, c]
)
blurx[x, y, z, c] = (
blurz[x - 2, y, z, c]
+ blurz[x - 1, y, z, c] * 4
+ blurz[x, y, z, c] * 6
+ blurz[x + 1, y, z, c] * 4
+ blurz[x + 2, y, z, c]
)
blury[x, y, z, c] = (
blurx[x, y - 2, z, c]
+ blurx[x, y - 1, z, c] * 4
+ blurx[x, y, z, c] * 6
+ blurx[x, y + 1, z, c] * 4
+ blurx[x, y + 2, z, c]
)
# Take trilinear samples to compute the output
val = hl.clamp(clamped[x, y], 0.0, 1.0)
zv = val / g.r_sigma
zi = hl.i32(zv)
zf = zv - zi
xf = hl.f32(x % g.s_sigma) / g.s_sigma
yf = hl.f32(y % g.s_sigma) / g.s_sigma
xi = x / g.s_sigma
yi = y / g.s_sigma
interpolated = hl.Func("interpolated")
interpolated[x, y, c] = hl.lerp(
hl.lerp(
hl.lerp(blury[xi, yi, zi, c], blury[xi + 1, yi, zi, c], xf),
hl.lerp(blury[xi, yi + 1, zi, c], blury[xi + 1, yi + 1, zi, c], xf),
yf,
),
hl.lerp(
hl.lerp(blury[xi, yi, zi + 1, c], blury[xi + 1, yi, zi + 1, c], xf),
hl.lerp(
blury[xi, yi + 1, zi + 1, c], blury[xi + 1, yi + 1, zi + 1, c], xf
),
yf,
),
zf,
)
# Normalize
g.bilateral_grid[x, y] = interpolated[x, y, 0] / interpolated[x, y, 1]
# ESTIMATES
# (This can be useful in conjunction with RunGen and benchmarks as well
# as auto-schedule, so we do it in all cases.)
# Provide estimates on the input image
g.input_buf.set_estimates([(0, 1536), (0, 2560)])
# Provide estimates on the parameters
g.r_sigma.set_estimate(0.1)
# TODO: Compute estimates from the parameter values
histogram.set_estimate(z, -2, 16)
blurz.set_estimate(z, 0, 12)
blurx.set_estimate(z, 0, 12)
blury.set_estimate(z, 0, 12)
g.bilateral_grid.set_estimates([(0, 1536), (0, 2560)])
if g.using_autoscheduler():
# nothing
pass
elif g.target().has_gpu_feature():
# 0.50ms on an RTX 2060
xi, yi, zi = hl.vars("xi yi zi")
# Schedule blurz in 8x8 tiles. This is a tile in
# grid-space, which means it represents something like
# 64x64 pixels in the input (if s_sigma is 8).
blurz.compute_root().reorder(c, z, x, y).gpu_tile(x, y, xi, yi, 8, 8)
# Schedule histogram to happen per-tile of blurz, with
# intermediate results in shared memory. This means histogram
# and blurz makes a three-stage kernel:
# 1) Zero out the 8x8 set of histograms
# 2) Compute those histogram by iterating over lots of the input image
# 3) Blur the set of histograms in z
histogram.reorder(c, z, x, y).compute_at(blurz, x).gpu_threads(x, y)
histogram.update().reorder(c, r.x, r.y, x, y).gpu_threads(x, y).unroll(c)
# Schedule the remaining blurs and the sampling at the end
# similarly.
(
blurx.compute_root()
.reorder(c, x, y, z)
.reorder_storage(c, x, y, z)
.vectorize(c)
.unroll(y, 2, hl.TailStrategy.RoundUp)
.gpu_tile(x, y, z, xi, yi, zi, 32, 8, 1, hl.TailStrategy.RoundUp)
)
(
blury.compute_root()
.reorder(c, x, y, z)
.reorder_storage(c, x, y, z)
.vectorize(c)
.unroll(y, 2, hl.TailStrategy.RoundUp)
.gpu_tile(x, y, z, xi, yi, zi, 32, 8, 1, hl.TailStrategy.RoundUp)
)
g.bilateral_grid.compute_root().gpu_tile(x, y, xi, yi, 32, 8)
interpolated.compute_at(g.bilateral_grid, xi).vectorize(c)
else:
# CPU schedule.
# 3.98ms on an Intel i9-9960X using 32 threads at 3.7 GHz
# using target x86-64-avx2. This is a little less
# SIMD-friendly than some of the other apps, so we
# benefit from hyperthreading, and don't benefit from
# AVX-512, which on my machine reduces the clock to 3.0
# GHz.
(
blurz.compute_root()
.reorder(c, z, x, y)
.parallel(y)
.vectorize(x, 8)
.unroll(c)
)
histogram.compute_at(blurz, y)
histogram.update().reorder(c, r.x, r.y, x, y).unroll(c)
(
blurx.compute_root() #
.reorder(c, x, y, z) #
.parallel(z) #
.vectorize(x, 8) #
.unroll(c)
)
(
blury.compute_root()
.reorder(c, x, y, z)
.parallel(z)
.vectorize(x, 8)
.unroll(c)
)
g.bilateral_grid.compute_root().parallel(y).vectorize(x, 8)
if __name__ == "__main__":
hl.main()
|