File: PyStubImpl.cpp

package info (click to toggle)
halide 21.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,420 kB
  • sloc: cpp: 289,327; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (292 lines) | stat: -rw-r--r-- 11,113 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

#include <string>
#include <utility>

#include <vector>

#include "Halide.h"

#if !defined(PYBIND11_VERSION_HEX) || PYBIND11_VERSION_HEX < 0x02060000
#error "Halide requires PyBind 2.6+"
#endif

// Note: This check will be redundant when PyBind 2.10 becomes the minimum version.
#if PY_VERSION_HEX < 0x03000000
#error "We appear to be compiling against Python 2.x rather than 3.x, which is not supported."
#endif

namespace py = pybind11;

namespace Halide {
namespace PythonBindings {

using ArgInfoKind = Internal::ArgInfoKind;
using ArgInfo = Internal::AbstractGenerator::ArgInfo;
using GeneratorFactory = Internal::GeneratorFactory;
using StubInput = Internal::StubInput;
using StubInputBuffer = Internal::StubInputBuffer<void>;

namespace {

class HalidePythonCompileTimeErrorReporter : public CompileTimeErrorReporter {
public:
    void warning(const char *msg) override {
        py::gil_scoped_acquire acquire;
        py::print(msg, py::arg("end") = "");
    }

    [[noreturn]] void error(const char *msg) override {
        throw Halide::Error(msg);
    }
};

void install_error_handlers(py::module &m) {
    static HalidePythonCompileTimeErrorReporter reporter;
    set_custom_compile_time_error_reporter(&reporter);

    static py::object halide_error = py::module_::import("halide").attr("HalideError");
    if (halide_error.is(py::none())) {
        throw std::runtime_error("Could not find halide.HalideError");
    }

    py::register_exception_translator([](std::exception_ptr p) {  // NOLINT
        try {
            if (p) {
                std::rethrow_exception(p);
            }
        } catch (const Error &e) {
            PyErr_SetString(halide_error.ptr(), e.what());
        }
    });
}

// Anything that defines __getitem__ looks sequencelike to pybind,
// so also check for __len_ to avoid things like Buffer and Func here.
bool is_real_sequence(const py::object &o) {
    return py::isinstance<py::sequence>(o) && py::hasattr(o, "__len__");
}

template<typename T>
struct cast_error_string {
    std::string operator()(const py::handle &h, const std::string &name) {
        return "Unable to cast Input " + name + " to " + py::type_id<T>() + " from " + (std::string)py::str(py::type::handle_of(h));
    }
};

template<>
std::string cast_error_string<Buffer<>>::operator()(const py::handle &h, const std::string &name) {
    std::ostringstream o;
    o << "Input " << name << " requires an ImageParam or Buffer argument when using call(), but saw " << (std::string)py::str(py::type::handle_of(h));
    return o.str();
}

template<>
std::string cast_error_string<Func>::operator()(const py::handle &h, const std::string &name) {
    std::ostringstream o;
    o << "Input " << name << " requires a Func argument when using call(), but saw " << (std::string)py::str(py::type::handle_of(h));
    return o.str();
}

template<>
std::string cast_error_string<Expr>::operator()(const py::handle &h, const std::string &name) {
    std::ostringstream o;
    o << "Input " << name << " requires a Param (or scalar literal) argument when using call(), but saw " << (std::string)py::str(py::type::handle_of(h));
    return o.str();
}

template<typename T>
T cast_to(const py::handle &h, const std::string &name) {
    // We want to ensure that the error thrown is one that will be translated
    // to `hl.HalideError` in Python.
    try {
        return h.cast<T>();
    } catch (const std::exception &e) {
        throw Halide::Error(cast_error_string<T>()(h, name));
    }
}

template<>
Parameter cast_to(const py::handle &h, const std::string &name) {
    auto b = cast_to<Buffer<>>(h, name);
    Parameter p(b.type(), true, b.dimensions());
    p.set_buffer(b);
    return p;
}

template<typename T>
std::vector<T> to_input_vector(const py::object &value, const std::string &name) {
    std::vector<T> v;
    if (is_real_sequence(value)) {
        for (const auto &o : py::reinterpret_borrow<py::sequence>(value)) {
            v.push_back(cast_to<T>(o, name));
        }
    } else {
        v.push_back(cast_to<T>(value, name));
    }
    return v;
}

py::object call_impl(const GeneratorFactory &factory,
                     const py::args &args,
                     const py::kwargs &kwargs) {
    auto active_generator_context = py::module_::import("halide").attr("active_generator_context");
    auto context = active_generator_context().cast<GeneratorContext>();
    auto generator = factory(context);

    // GeneratorParams are always specified as an optional named parameter
    // called "generator_params", which is expected to be a python dict.
    // If generatorparams are specified, do them first, before any Inputs.
    if (kwargs.contains("generator_params")) {
        py::handle h = kwargs["generator_params"];
        _halide_user_assert(py::isinstance<py::dict>(h)) << "generator_params must be a dict";
        py::dict gp = py::cast<py::dict>(h);
        for (auto item : gp) {
            const std::string gp_name = py::str(item.first).cast<std::string>();
            const py::handle gp_value = item.second;
            if (py::isinstance<LoopLevel>(gp_value)) {
                // Note that while Python Generators don't support LoopLevels,
                // C++ Generators do, and that's what we're calling here, so
                // be sure to allow passing 'em in.
                generator->set_generatorparam_value(gp_name, gp_value.cast<LoopLevel>());
            } else if (py::isinstance<py::list>(gp_value)) {
                // Convert [hl.UInt(8), hl.Int(16)] -> uint8,int16
                std::string v;
                for (auto t : gp_value) {
                    if (!v.empty()) {
                        v += ",";
                    }
                    v += py::str(t).cast<std::string>();
                }
                generator->set_generatorparam_value(gp_name, v);
            } else {
                generator->set_generatorparam_value(gp_name, py::str(gp_value).cast<std::string>());
            }
        }
    }

    // Don't call arginfos() until after we have set all GeneratorParams.

    const auto arg_infos = generator->arginfos();
    std::vector<ArgInfo> input_arguments, output_arguments;
    std::map<std::string, ArgInfo> input_arguments_map;
    std::set<std::string> inputs_seen;
    for (const auto &a : arg_infos) {
        if (a.dir == Internal::ArgInfoDirection::Input) {
            input_arguments.push_back(a);
            input_arguments_map[a.name] = a;
        } else {
            output_arguments.push_back(a);
        }
    }

    _halide_user_assert(args.size() <= input_arguments.size()) << "Generator '" << generator->name()
                                                               << "' allows at most " << input_arguments.size()
                                                               << " positional args, but " << args.size() << " were specified.";

    const auto bind_one = [&generator](py::handle h, const ArgInfo &a) {
        py::object o = py::cast<py::object>(h);
        if (a.kind == ArgInfoKind::Buffer) {
            generator->bind_input(a.name, to_input_vector<Parameter>(o, a.name));
        } else if (a.kind == ArgInfoKind::Function) {
            generator->bind_input(a.name, to_input_vector<Func>(o, a.name));
        } else {
            generator->bind_input(a.name, to_input_vector<Expr>(o, a.name));
        }
    };

    for (size_t i = 0; i < args.size(); i++) {
        const auto &a = input_arguments[i];
        _halide_user_assert(inputs_seen.count(a.name) == 0) << "Input " << a.name << " specified multiple times.";
        inputs_seen.insert(a.name);
        bind_one(args[i], a);
    }

    for (auto kw : kwargs) {
        const std::string name = kw.first.cast<std::string>();
        const py::handle value = kw.second;

        if (name == "generator_params") {
            continue;
        }

        auto it = input_arguments_map.find(name);
        _halide_user_assert(it != input_arguments_map.end()) << "Unknown input '" << name << "' specified via keyword argument.";
        _halide_user_assert(inputs_seen.count(name) == 0) << "Input " << name << " specified multiple times.";
        inputs_seen.insert(name);

        const auto &a = it->second;
        bind_one(value, a);
    }

    _halide_user_assert(inputs_seen.size() == input_arguments.size()) << "Generator '" << generator->name()
                                                                      << "' requires " << input_arguments.size()
                                                                      << " args, but " << inputs_seen.size() << " were specified.";

    generator->build_pipeline();

    const size_t outputs_size = output_arguments.size();
    py::tuple py_outputs(outputs_size);
    for (size_t i = 0; i < outputs_size; i++) {
        std::vector<Func> outputs = generator->output_func(output_arguments[i].name);

        py::object o;
        if (outputs.size() == 1) {
            // convert list-of-1 into single element
            o = py::cast(outputs[0]);
        } else {
            o = py::cast(outputs);
        }
        if (outputs_size == 1) {
            // bail early, returning the single object rather than a dict
            return o;
        }
        py_outputs[i] = o;
    }

    // An explicit "std::move" is needed here because there's
    // an implicit tuple->object conversion that inhibits it otherwise.
    return std::move(py_outputs);
}

void pystub_init(pybind11::module &m, const GeneratorFactory &factory) {
    m.def(
        "call", [factory](const py::args &args, const py::kwargs &kwargs) -> py::object {
            return call_impl(factory, args, kwargs);
        });
}

}  // namespace
}  // namespace PythonBindings
}  // namespace Halide

extern "C" PyObject *_halide_pystub_impl(const char *module_name, const Halide::Internal::GeneratorFactory &factory) {
    int major, minor;
    if (sscanf(Py_GetVersion(), "%i.%i", &major, &minor) != 2) {
        PyErr_SetString(PyExc_ImportError, "Can't parse Python version.");
        return nullptr;
    } else if (major != PY_MAJOR_VERSION || minor != PY_MINOR_VERSION) {
        PyErr_Format(PyExc_ImportError,
                     "Python version mismatch: module was compiled for "
                     "version %i.%i, while the interpreter is running "
                     "version %i.%i.",
                     PY_MAJOR_VERSION, PY_MINOR_VERSION,
                     major, minor);
        return nullptr;
    }

    // TODO: do something meaningful with the PyModuleDef & add a doc string
    auto m = pybind11::module_::create_extension_module(module_name, nullptr, new PyModuleDef());
    try {
        Halide::PythonBindings::install_error_handlers(m);
        Halide::PythonBindings::pystub_init(m, factory);
        return m.ptr();
    } catch (pybind11::error_already_set &e) {
        PyErr_SetString(PyExc_ImportError, e.what());
        return nullptr;
    } catch (const std::exception &e) {
        PyErr_SetString(PyExc_ImportError, e.what());
        return nullptr;
    }
}