File: lesson_09_update_definitions.py

package info (click to toggle)
halide 21.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,420 kB
  • sloc: cpp: 289,327; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (670 lines) | stat: -rw-r--r-- 26,579 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#!/usr/bin/python3

# Halide tutorial lesson 9

# This lesson demonstrates how to define a hl.Func in multiple passes,
# including scattering.

# This lesson can be built by invoking the command:
#    make test_tutorial_lesson_09_update_definitions
# in a shell with the current directory at python_bindings/
import halide as hl

import halide.imageio
import numpy as np
import os.path


def main():
    # Declare some Vars to use below.
    x, y = hl.Var("x"), hl.Var("y")

    # Load a grayscale image to use as an input.
    image_path = os.path.join(
        os.path.dirname(__file__), "../../tutorial/images/gray.png"
    )
    input_data = halide.imageio.imread(image_path)
    if True:
        # making the image smaller to go faster
        input_data = input_data[:150, :160]
    assert input_data.dtype == np.uint8
    input = hl.Buffer(input_data)

    # You can define a hl.Func in multiple passes. Let's see a toy
    # example first.
    if True:
        # The first definition must be one like we have seen already
        # - a mapping from Vars to an hl.Expr:
        f = hl.Func("f")
        f[x, y] = x + y
        # We call this first definition the "pure" definition.

        # But the later definitions can include computed expressions on
        # both sides. The simplest example is modifying a single point:
        f[3, 7] = 42

        # We call these extra definitions "update" definitions, or
        # "reduction" definitions. A reduction definition is an
        # update definition that recursively refers back to the
        # function's current value at the same site:
        if False:
            e = f[x, y] + 17
            print("f[x, y] + 17", e)
            print("(f[x, y] + 17).type()", e.type())
            print("(f[x, y]).type()", f[x, y].type())

        f[x, y] = f[x, y] + 17

        # If we confine our update to a single row, we can
        # recursively refer to values in the same column:
        f[x, 3] = f[x, 0] * f[x, 10]

        # Similarly, if we confine our update to a single column, we
        # can recursively refer to other values in the same row.
        f[0, y] = f[0, y] / f[3, y]

        # The general rule is: Each hl.Var used in an update definition
        # must appear unadorned in the same position as in the pure
        # definition in all references to the function on the left-
        # and right-hand sides. So the following definitions are
        # legal updates:
        # x is used, so all uses of f must have x as the first argument.
        f[x, 17] = x + 8
        # y is used, so all uses of f must have y as the second argument.
        f[0, y] = y * 8
        f[x, x + 1] = x + 8
        f[y / 2, y] = f[0, y] * 17

        # But these ones would cause an error:
        # f[x, 0) = f[x + 1, 0) <- First argument to f on the right-hand-side must be 'x', not 'x + 1'.
        # f[y, y + 1) = y + 8   <- Second argument to f on the left-hand-side must be 'y', not 'y + 1'.
        # f[y, x) = y - x      <- Arguments to f on the left-hand-side are in the wrong places.
        # f[3, 4) = x + y      <- Free variables appear on the right-hand-side
        # but not the left-hand-side.

        # We'll realize this one just to make sure it compiles. The
        # second-to-last definition forces us to realize over a
        # domain that is taller than it is wide.
        f.realize([100, 101])

        # For each realization of f, each step runs in its entirety
        # before the next one begins. Let's trace the loads and
        # stores for a simpler example:
        g = hl.Func("g")
        g[x, y] = x + y  # Pure definition
        g[2, 1] = 42  # First update definition
        g[x, 0] = g[x, 1]  # Second update definition

        g.trace_loads()
        g.trace_stores()

        g.realize([4, 4])

        # Reading the log, we see that each pass is applied in turn. The
        # equivalent Python is:
        result = np.empty((4, 4), dtype=np.int32)
        # Pure definition
        for yy in range(4):
            for xx in range(4):
                result[yy][xx] = xx + yy

        # First update definition
        result[1][2] = 42
        # Second update definition
        for xx in range(4):
            result[0][xx] = result[1][xx]
    # end of section

    # Putting update passes inside loops.
    if True:
        # Starting with this pure definition:
        f = hl.Func("f")
        f[x, y] = x + y

        # Say we want an update that squares the first fifty rows. We
        # could do this by adding 50 update definitions:

        # f[x, 0) = f[x, 0) * f[x, 0)
        # f[x, 1) = f[x, 1) * f[x, 1)
        # f[x, 2) = f[x, 2) * f[x, 2)
        # ...
        # f[x, 49) = f[x, 49) * f[x, 49)

        # Or equivalently using a compile-time loop in our C++:
        # for (int i = 0 i < 50 i++) {
        #   f[x, i) = f[x, i) * f[x, i)
        #

        # But it's more manageable and more flexible to put the loop
        # in the generated code. We do this by defining a "reduction
        # domain" and using it inside an update definition:
        r = hl.RDom([(0, 50)])
        f[x, r] = f[x, r] * f[x, r]
        halide_result = f.realize([100, 100])

        # The equivalent Python is:
        py_result = np.empty((100, 100), dtype=np.int32)
        for yy in range(100):
            for xx in range(100):
                py_result[yy][xx] = xx + yy

        for xx in range(100):
            for rr in range(50):
                # The loop over the reduction domain occurs inside of
                # the loop over any pure variables used in the update
                # step:
                py_result[rr][xx] = py_result[rr][xx] * py_result[rr][xx]

        # Check the results match:
        for yy in range(100):
            for xx in range(100):
                assert halide_result[xx, yy] == py_result[yy][xx], (
                    f"halide_result({xx}, {yy}) = {halide_result[xx, yy]} instead of {py_result[yy][xx]}"
                )

    # Now we'll examine a real-world use for an update definition:
    # computing a histogram.
    if True:
        # Some operations on images can't be cleanly expressed as a pure
        # function from the output coordinates to the value stored
        # there. The classic example is computing a histogram. The
        # natural way to do it is to iterate over the input image,
        # updating histogram buckets. Here's how you do that in Halide:
        histogram = hl.Func("histogram")

        # Histogram buckets start as zero.
        histogram[x] = 0

        # Define a multi-dimensional reduction domain over the input image:
        r = hl.RDom([(0, input.width()), (0, input.height())])

        # For every point in the reduction domain, increment the
        # histogram bucket corresponding to the intensity of the
        # input image at that point.
        histogram[input[r.x, r.y]] += 1

        halide_result = histogram.realize([256])

        # The equivalent Python is:
        py_result = np.empty((256), dtype=np.int32)
        for xx in range(256):
            py_result[xx] = 0

        for r_y in range(input.height()):
            for r_x in range(input.width()):
                py_result[input_data[r_y, r_x]] += 1

        # Check the answers agree:
        for xx in range(256):
            assert py_result[xx] == halide_result[xx], (
                f"halide_result({xx}) = {halide_result[xx]} instead of {py_result[xx]}"
            )

    # Scheduling update steps
    if True:
        # The pure variables in an update step and can be
        # parallelized, vectorized, split, etc as usual.

        # Vectorizing, splitting, or parallelize the variables that
        # are part of the reduction domain is trickier. We'll cover
        # that in a later lesson.

        # Consider the definition:
        f = hl.Func("x")
        f[x, y] = x * y
        # Set the second row to equal the first row.
        f[x, 1] = f[x, 0]
        # Set the second column to equal the first column plus 2.
        f[1, y] = f[0, y] + 2

        # The pure variables in each stage can be scheduled
        # independently. To control the pure definition, we schedule
        # as we have done in the past. The following code vectorizes
        # and parallelizes the pure definition only.
        f.vectorize(x, 4).parallel(y)

        # We use hl.Func::update(int) to get a handle to an update step
        # for the purposes of scheduling. The following line
        # vectorizes the first update step across x. We can't do
        # anything with y for this update step, because it doesn't
        # use y.
        f.update(0).vectorize(x, 4)

        # Now we parallelize the second update step in chunks of size
        # 4.
        yo, yi = hl.Var("yo"), hl.Var("yi")
        f.update(1).split(y, yo, yi, 4).parallel(yo)

        halide_result = f.realize([16, 16])

        # Here's the equivalent (serial) C:
        py_result = np.empty((16, 16), dtype=np.int32)

        # Pure step. Vectorized in x and parallelized in y.
        for yy in range(16):  # Should be a parallel for loop
            for x_vec in range(4):
                xx = [x_vec * 4, x_vec * 4 + 1, x_vec * 4 + 2, x_vec * 4 + 3]
                py_result[yy][xx[0]] = xx[0] * yy
                py_result[yy][xx[1]] = xx[1] * yy
                py_result[yy][xx[2]] = xx[2] * yy
                py_result[yy][xx[3]] = xx[3] * yy

        # First update. Vectorized in x.
        for x_vec in range(4):
            xx = [x_vec * 4, x_vec * 4 + 1, x_vec * 4 + 2, x_vec * 4 + 3]
            py_result[1][xx[0]] = py_result[0][xx[0]]
            py_result[1][xx[1]] = py_result[0][xx[1]]
            py_result[1][xx[2]] = py_result[0][xx[2]]
            py_result[1][xx[3]] = py_result[0][xx[3]]

        # Second update. Parallelized in chunks of size 4 in y.
        for yo in range(4):  # Should be a parallel for loop
            for yi in range(4):
                yy = yo * 4 + yi
                py_result[yy][1] = py_result[yy][0] + 2

        # Check the C and Halide results match:
        for yy in range(16):
            for xx in range(16):
                assert halide_result[xx, yy] == py_result[yy][xx], (
                    f"halide_result({xx}, {yy}) = {halide_result[xx, yy]} instead of {py_result[yy][xx]}"
                )

    # That covers how to schedule the variables within a hl.Func that
    # uses update steps, but what about producer-consumer
    # relationships that involve compute_at and store_at? Let's
    # examine a reduction as a producer, in a producer-consumer pair.
    if True:
        # Because an update does multiple passes over a stored array,
        # it's not meaningful to inline them. So the default schedule
        # for them does the closest thing possible. It computes them
        # in the innermost loop of their consumer. Consider this
        # trivial example:
        producer, consumer = hl.Func("producer"), hl.Func("consumer")
        producer[x] = x * 17
        producer[x] += 1
        consumer[x] = 2 * producer[x]
        halide_result = consumer.realize([10])

        # The equivalent Python is:
        py_result = np.empty((10), dtype=np.int32)
        for xx in range(10):
            producer_storage = np.empty((1), dtype=np.int32)
            # Pure step for producer
            producer_storage[0] = xx * 17
            # Update step for producer
            producer_storage[0] = producer_storage[0] + 1
            # Pure step for consumer
            py_result[xx] = 2 * producer_storage[0]

        # Check the results match
        for xx in range(10):
            assert halide_result[xx] == py_result[xx], (
                f"halide_result({xx}) = {halide_result[xx]} instead of {py_result[xx]}"
            )

        # For all other compute_at/store_at options, the reduction
        # gets placed where you would expect, somewhere in the loop
        # nest of the consumer.

    # Now let's consider a reduction as a consumer in a
    # producer-consumer pair. This is a little more involved.
    if True:
        if True:
            # Case 1: The consumer references the producer in the pure step
            # only.
            producer, consumer = hl.Func("producer"), hl.Func("consumer")
            # The producer is pure.
            producer[x] = x * 17
            consumer[x] = 2 * producer[x]
            consumer[x] += 1

            # The valid schedules for the producer in this case are
            # the default schedule - inlined, and also:
            #
            # 1) producer.compute_at(x), which places the computation of
            # the producer inside the loop over x in the pure step of the
            # consumer.
            #
            # 2) producer.compute_root(), which computes all of the
            # producer ahead of time.
            #
            # 3) producer.store_root().compute_at(x), which allocates
            # space for the consumer outside the loop over x, but fills
            # it in as needed inside the loop.
            #
            # Let's use option 1.

            producer.compute_at(consumer, x)

            halide_result = consumer.realize([10])

            # The equivalent Python is:
            py_result = np.empty((10), dtype=np.int32)

            # Pure step for the consumer
            for xx in range(10):
                # Pure step for producer
                producer_storage = np.empty((1), dtype=np.int32)
                producer_storage[0] = xx * 17
                py_result[xx] = 2 * producer_storage[0]

            # Update step for the consumer
            for xx in range(10):
                py_result[xx] += 1

            # All of the pure step is evaluated before any of the
            # update step, so there are two separate loops over x.

            # Check the results match
            for xx in range(10):
                assert halide_result[xx] == py_result[xx], (
                    f"halide_result({xx}) = {halide_result[xx]} instead of {py_result[xx]}"
                )

        if True:
            # Case 2: The consumer references the producer in the update step
            # only
            producer, consumer = hl.Func("producer"), hl.Func("consumer")
            producer[x] = x * 17
            consumer[x] = x
            consumer[x] += producer[x]

            # Again we compute the producer per x coordinate of the
            # consumer. This places producer code inside the update
            # step of the producer, because that's the only step that
            # uses the producer.
            producer.compute_at(consumer, x)

            # Note however, that we didn't say:
            #
            # producer.compute_at(consumer.update(0), x).
            #
            # Scheduling is done with respect to Vars of a hl.Func, and
            # the Vars of a hl.Func are shared across the pure and
            # update steps.

            halide_result = consumer.realize([10])

            # The equivalent Python is:
            py_result = np.empty((10), dtype=np.int32)
            # Pure step for the consumer
            for xx in range(10):
                py_result[xx] = xx

            # Update step for the consumer
            for xx in range(10):
                # Pure step for producer
                producer_storage = np.empty((1), dtype=np.int32)
                producer_storage[0] = xx * 17
                py_result[xx] += producer_storage[0]

            # Check the results match
            for xx in range(10):
                assert halide_result[xx] == py_result[xx], (
                    f"halide_result({xx}) = {halide_result[xx]} instead of {py_result[xx]}"
                )

        if True:
            # Case 3: The consumer references the producer in
            # multiple steps that share common variables
            producer, consumer = hl.Func("producer"), hl.Func("consumer")
            producer[x] = x * 17
            consumer[x] = producer[x] * x
            consumer[x] += producer[x]

            # Again we compute the producer per x coordinate of the
            # consumer. This places producer code inside both the
            # pure and the update step of the producer. So there ends
            # up being two separate realizations of the producer, and
            # redundant work occurs.
            producer.compute_at(consumer, x)

            halide_result = consumer.realize([10])

            # The equivalent Python is:
            py_result = np.empty((10), dtype=np.int32)
            # Pure step for the consumer
            for xx in range(10):
                # Pure step for producer
                producer_storage = np.empty((1), dtype=np.int32)
                producer_storage[0] = xx * 17
                py_result[xx] = producer_storage[0] * xx

            # Update step for the consumer
            for xx in range(10):
                # Another copy of the pure step for producer
                producer_storage = np.empty((1), dtype=np.int32)
                producer_storage[0] = xx * 17
                py_result[xx] += producer_storage[0]

            # Check the results match
            for xx in range(10):
                assert halide_result[xx] == py_result[xx], (
                    f"halide_result({xx}) = {halide_result[xx]} instead of {py_result[xx]}"
                )

        if True:
            # Case 4: The consumer references the producer in
            # multiple steps that do not share common variables
            producer, consumer = hl.Func("producer"), hl.Func("consumer")
            producer[x, y] = x * y
            consumer[x, y] = x + y
            consumer[x, 0] = producer[x, x - 1]
            consumer[0, y] = producer[y, y - 1]

            # In this case neither producer.compute_at(consumer, x)
            # nor producer.compute_at(consumer, y) will work, because
            # either one fails to cover one of the uses of the
            # producer. So we'd have to inline producer, or use
            # producer.compute_root().

            # Let's say we really really want producer to be
            # compute_at the inner loops of both consumer update
            # steps. Halide doesn't allow multiple different
            # schedules for a single hl.Func, but we can work around it
            # by making two wrappers around producer, and scheduling
            # those instead:

            # Attempt 2:
            producer_wrapper_1, producer_wrapper_2, consumer_2 = (
                hl.Func(),
                hl.Func(),
                hl.Func(),
            )
            producer_wrapper_1[x, y] = producer[x, y]
            producer_wrapper_2[x, y] = producer[x, y]

            consumer_2[x, y] = x + y
            consumer_2[x, 0] += producer_wrapper_1[x, x - 1]
            consumer_2[0, y] += producer_wrapper_2[y, y - 1]

            # The wrapper functions give us two separate handles on
            # the producer, so we can schedule them differently.
            producer_wrapper_1.compute_at(consumer_2, x)
            producer_wrapper_2.compute_at(consumer_2, y)

            halide_result = consumer_2.realize([10, 10])

            # The equivalent Python is:
            py_result = np.empty((10, 10), dtype=np.int32)

            # Pure step for the consumer
            for yy in range(10):
                for xx in range(10):
                    py_result[yy][xx] = xx + yy

            # First update step for consumer
            for xx in range(10):
                producer_wrapper_1_storage = np.empty((1), dtype=np.int32)
                producer_wrapper_1_storage[0] = xx * (xx - 1)
                py_result[0][xx] += producer_wrapper_1_storage[0]

            # Second update step for consumer
            for yy in range(10):
                producer_wrapper_2_storage = np.empty((1), dtype=np.int32)
                producer_wrapper_2_storage[0] = yy * (yy - 1)
                py_result[yy][0] += producer_wrapper_2_storage[0]

            # Check the results match
            for yy in range(10):
                for xx in range(10):
                    assert halide_result[xx, yy] == py_result[yy][xx], (
                        f"halide_result({xx}, {yy}) = {halide_result[xx, yy]} instead of {py_result[yy][xx]}"
                    )

        if True:
            # Case 5: Scheduling a producer under a reduction domain
            # variable of the consumer.

            # We are not just restricted to scheduling producers at
            # the loops over the pure variables of the consumer. If a
            # producer is only used within a loop over a reduction
            # domain (hl.RDom) variable, we can also schedule the
            # producer there.

            producer, consumer = hl.Func("producer"), hl.Func("consumer")

            r = hl.RDom([(0, 5)])
            producer[x] = x * 17
            consumer[x] = x + 10
            consumer[x] += r + producer[x + r]

            producer.compute_at(consumer, r)

            halide_result = consumer.realize([10])

            # The equivalent Python is:
            py_result = np.empty((10), dtype=np.int32)
            # Pure step for the consumer.
            for xx in range(10):
                py_result[xx] = xx + 10

            # Update step for the consumer.
            for xx in range(10):
                # The loop over the reduction domain is always the inner loop.
                for rr in range(5):
                    # We've schedule the storage and computation of
                    # the producer here. We just need a single value.
                    producer_storage = np.empty((1), dtype=np.int32)
                    # Pure step of the producer.
                    producer_storage[0] = (xx + rr) * 17

                    # Now use it in the update step of the consumer.
                    py_result[xx] += rr + producer_storage[0]

            # Check the results match
            for xx in range(10):
                assert halide_result[xx] == py_result[xx], (
                    f"halide_result({xx}) = {halide_result[xx]} instead of {py_result[xx]}"
                )

    # A real-world example of a reduction inside a producer-consumer chain.
    if True:
        # The default schedule for a reduction is a good one for
        # convolution-like operations. For example, the following
        # computes a 5x5 box-blur of our grayscale test image with a
        # hl.clamp-to-edge boundary condition:

        # First add the boundary condition.
        clamped = hl.BoundaryConditions.repeat_edge(input)

        # Define a 5x5 box that starts at (-2, -2)
        r = hl.RDom([(-2, 5), (-2, 5)])

        # Compute the 5x5 sum around each pixel.
        local_sum = hl.Func("local_sum")
        local_sum[x, y] = 0  # Compute the sum as a 32-bit integer
        local_sum[x, y] += clamped[x + r.x, y + r.y]

        # Divide the sum by 25 to make it an average
        blurry = hl.Func("blurry")
        blurry[x, y] = hl.cast(hl.UInt(8), local_sum[x, y] / 25)

        halide_result = blurry.realize([input.width(), input.height()])

        # The default schedule will inline 'clamped' into the update
        # step of 'local_sum', because clamped only has a pure
        # definition, and so its default schedule is fully-inlined.
        # We will then compute local_sum per x coordinate of blurry,
        # because the default schedule for reductions is
        # compute-innermost. Here's the equivalent Python:

        # cast_to_uint8 = lambda x_: np.array([x_], dtype=np.uint8)[0]
        local_sum = np.empty((1), dtype=np.int32)

        py_result = hl.Buffer(hl.UInt(8), [input.width(), input.height()])
        for yy in range(input.height()):
            for xx in range(input.width()):
                # FIXME this loop is quite slow
                # Pure step of local_sum
                local_sum[0] = 0
                # Update step of local_sum
                for r_y in range(-2, 2 + 1):
                    for r_x in range(-2, 2 + 1):
                        # The clamping has been inlined into the update step.
                        clamped_x = min(max(xx + r_x, 0), input.width() - 1)
                        clamped_y = min(max(yy + r_y, 0), input.height() - 1)
                        local_sum[0] += input[clamped_x, clamped_y]

                # Pure step of blurry
                # py_result(x, y) = (uint8_t)(local_sum[0] / 25)
                # py_result[xx, yy] = cast_to_uint8(local_sum[0] / 25)
                # hl.cast done internally
                py_result[xx, yy] = int(local_sum[0] / 25)

        # Check the results match
        for yy in range(input.height()):
            for xx in range(input.width()):
                assert halide_result[xx, yy] == py_result[xx, yy], (
                    f"halide_result({xx}, {yy}) = {halide_result[xx, yy]} instead of {py_result[xx, yy]}"
                )

    # Reduction helpers.
    if True:
        # There are several reduction helper functions provided in
        # Halide.h, which compute small reductions and schedule them
        # innermost into their consumer. The most useful one is
        # "sum".
        f1 = hl.Func("f1")
        r = hl.RDom([(0, 100)])
        f1[x] = hl.sum(r + x) * 7

        # Sum creates a small anonymous hl.Func to do the reduction. It's
        # equivalent to:
        f2, anon = hl.Func("f2"), hl.Func("anon")
        anon[x] = 0
        anon[x] += r + x
        f2[x] = anon[x] * 7

        # So even though f1 references a reduction domain, it is a
        # pure function. The reduction domain has been swallowed to
        # define the inner anonymous reduction.
        halide_result_1 = f1.realize([10])
        halide_result_2 = f2.realize([10])

        # The equivalent Python is:
        py_result = np.empty((10), dtype=np.int32)
        for xx in range(10):
            anon = np.empty((1), dtype=np.int32)
            anon[0] = 0
            for rr in range(100):
                anon[0] += rr + xx

            py_result[xx] = anon[0] * 7

        # Check they all match.
        for xx in range(10):
            assert halide_result_1[xx] == py_result[xx], (
                f"halide_result_1({xx}) = {halide_result_1[xx]} instead of {py_result[xx]}"
            )
            assert halide_result_2[xx] == py_result[xx], (
                f"halide_result_2({xx}) = {halide_result_2[xx]} instead of {py_result[xx]}"
            )

    print("Success!")
    return 0


if __name__ == "__main__":
    main()