| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 
 | #!/usr/bin/python3
# Halide tutorial lesson 12.
# This lesson demonstrates how to use Halide to run code on a GPU.
# This lesson can be built by invoking the command:
#    make test_tutorial_lesson_12_using_the_gpu
# in a shell with the current directory at python_bindings/
import halide as hl
import halide.imageio
import os.path
import struct
# Include a clock to do performance testing.
from datetime import datetime
# Define some Vars to use.
x, y, c, i, xo, yo, xi, yi = hl.vars("x y c i xo yo xi yi")
# We're going to want to schedule a pipeline in several ways, so we
# define the pipeline in a class so that we can recreate it several
# times with different schedules.
class MyPipeline:
    def __init__(self, input):
        assert input.type() == hl.UInt(8)
        self.lut = hl.Func("lut")
        self.padded = hl.Func("padded")
        self.padded16 = hl.Func("padded16")
        self.sharpen = hl.Func("sharpen")
        self.curved = hl.Func("curved")
        self.input = input
        # For this lesson, we'll use a two-stage pipeline that sharpens
        # and then applies a look-up-table (LUT).
        # First we'll define the LUT. It will be a gamma curve.
        gamma = hl.f32(1.2)
        self.lut[i] = hl.u8(hl.clamp(hl.pow(i / 255.0, gamma) * 255.0, 0, 255))
        # Augment the input with a boundary condition.
        self.padded[x, y, c] = input[
            hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), c
        ]
        # Cast it to 16-bit to do the math.
        self.padded16[x, y, c] = hl.u16(self.padded[x, y, c])
        # Next we sharpen it with a five-tap filter.
        self.sharpen[x, y, c] = (
            self.padded16[x, y, c] * 2
            - (
                self.padded16[x - 1, y, c]
                + self.padded16[x, y - 1, c]
                + self.padded16[x + 1, y, c]
                + self.padded16[x, y + 1, c]
            )
            / 4
        )
        # Then apply the LUT.
        self.curved[x, y, c] = self.lut[self.sharpen[x, y, c]]
    # Now we define methods that give our pipeline several different
    # schedules.
    def schedule_for_cpu(self):
        # Compute the look-up-table ahead of time.
        self.lut.compute_root()
        # Compute color channels innermost. Promise that there will
        # be three of them and unroll across them.
        self.curved.reorder(c, x, y).bound(c, 0, 3).unroll(c)
        # Look-up-tables don't vectorize well, so just parallelize
        # curved in slices of 16 scanlines.
        self.curved.split(y, yo, yi, 16).parallel(yo)
        # Compute sharpen as needed per scanline of curved, reusing
        # previous values computed within the same strip of 16
        # scanlines.
        self.sharpen.compute_at(self.curved, yi)
        # Vectorize the sharpen. It's 16-bit so we'll vectorize it 8-wide.
        self.sharpen.vectorize(x, 8)
        # Compute the padded input at the same granularity as the
        # sharpen. We'll leave the cast to 16-bit inlined into
        # sharpen.
        self.padded.store_at(self.curved, yo).compute_at(self.curved, yi)
        # Also vectorize the padding. It's 8-bit, so we'll vectorize
        # 16-wide.
        self.padded.vectorize(x, 16)
        # JIT-compile the pipeline for the CPU.
        target = hl.get_host_target()
        self.curved.compile_jit(target)
        return
    # Now a schedule that uses CUDA or OpenCL.
    def schedule_for_gpu(self):
        target = find_gpu_target()
        if not target.has_gpu_feature():
            return False
        # If you want to see all of the OpenCL, Metal, CUDA or D3D 12 API
        # calls done by the pipeline, you can also enable the Debug flag.
        # This is helpful for figuring out which stages are slow, or when
        # CPU -> GPU copies happen. It hurts performance though, so we'll
        # leave it commented out.
        # target.set_feature(hl.TargetFeature.Debug)
        # We make the decision about whether to use the GPU for each
        # hl.Func independently. If you have one hl.Func computed on the
        # CPU, and the next computed on the GPU, Halide will do the
        # copy-to-gpu under the hood. For this pipeline, there's no
        # reason to use the CPU for any of the stages. Halide will
        # copy the input image to the GPU the first time we run the
        # pipeline, and leave it there to reuse on subsequent runs.
        # As before, we'll compute the LUT once at the start of the
        # pipeline.
        self.lut.compute_root()
        # Let's compute the look-up-table using the GPU in 16-wide
        # one-dimensional thread blocks. First we split the index
        # into blocks of size 16:
        block, thread = hl.Var("block"), hl.Var("thread")
        self.lut.split(i, block, thread, 16)
        # Then we tell cuda that our Vars 'block' and 'thread'
        # correspond to CUDA's notions of blocks and threads, or
        # OpenCL's notions of thread groups and threads.
        self.lut.gpu_blocks(block).gpu_threads(thread)
        # This is a very common scheduling pattern on the GPU, so
        # there's a shorthand for it:
        # lut.gpu_tile(i, block, thread, 16);
        # hl.Func.gpu_tile behaves the same as hl.Func.tile, except that
        # it also specifies that the tile coordinates correspond to
        # GPU blocks, and the coordinates within each tile correspond
        # to GPU threads.
        # Compute color channels innermost. Promise that there will
        # be three of them and unroll across them.
        self.curved.reorder(c, x, y).bound(c, 0, 3).unroll(c)
        # Compute curved in 2D 8x8 tiles using the GPU.
        self.curved.gpu_tile(x, y, xo, yo, xi, yi, 8, 8)
        # This is equivalent to:
        # curved.tile(x, y, xo, yo, xi, yi, 8, 8)
        #       .gpu_blocks(xo, yo)
        #       .gpu_threads(xi, yi)
        # We'll leave sharpen as inlined into curved.
        # Compute the padded input as needed per GPU block, storing
        # the intermediate result in shared memory. In the schedule
        # above xo corresponds to GPU blocks.
        self.padded.compute_at(self.curved, xo)
        # Use the GPU threads for the x and y coordinates of the
        # padded input.
        self.padded.gpu_threads(x, y)
        # JIT-compile the pipeline for the GPU. CUDA, OpenCL, or
        # Metal are not enabled by default. We have to construct a
        # Target object, enable one of them, and then pass that
        # target object to compile_jit. Otherwise your CPU will very
        # slowly pretend it's a GPU, and use one thread per output
        # pixel.
        print("Target: ", target)
        self.curved.compile_jit(target)
        return True
    def test_performance(self):
        # Test the performance of the scheduled MyPipeline.
        output = hl.Buffer(
            hl.UInt(8), [self.input.width(), self.input.height(), self.input.channels()]
        )
        # Run the filter once to initialize any GPU runtime state.
        self.curved.realize(output)
        # Now take the best of 3 runs for timing.
        best_time = float("inf")
        for i in range(3):
            t1 = datetime.now()
            # Run the filter 100 times.
            for j in range(100):
                self.curved.realize(output)
            # Force any GPU code to finish by copying the buffer back to the
            # CPU.
            output.copy_to_host()
            t2 = datetime.now()
            elapsed = (t2 - t1).total_seconds()
            if elapsed < best_time:
                best_time = elapsed
        # end of "best of three times"
        print("%1.4f milliseconds" % (best_time * 1000))
    def test_correctness(self, reference_output):
        assert reference_output.type() == hl.UInt(8)
        output = self.curved.realize(
            [self.input.width(), self.input.height(), self.input.channels()]
        )
        assert output.type() == hl.UInt(8)
        # Check against the reference output.
        for cc in range(self.input.channels()):
            for yy in range(self.input.height()):
                for xx in range(self.input.width()):
                    assert output[xx, yy, cc] == reference_output[xx, yy, cc], (
                        f"Mismatch between output ({output[xx, yy, cc]}) and reference output "
                        f"({reference_output[xx, yy, cc]}) at {xx}, {yy}, {cc}"
                    )
        print("CPU and GPU outputs are consistent.")
def main():
    # Load an input image.
    image_path = os.path.join(
        os.path.dirname(__file__), "../../tutorial/images/rgb.png"
    )
    input = hl.Buffer(halide.imageio.imread(image_path))
    # Allocated an image that will store the correct output
    reference_output = hl.Buffer(
        hl.UInt(8), [input.width(), input.height(), input.channels()]
    )
    print("Running pipeline on CPU:")
    p1 = MyPipeline(input)
    p1.schedule_for_cpu()
    p1.curved.realize(reference_output)
    print("Running pipeline on GPU:")
    p2 = MyPipeline(input)
    has_gpu_target = p2.schedule_for_gpu()
    if has_gpu_target:
        print("Testing GPU correctness:")
        p2.test_correctness(reference_output)
    else:
        print("No GPU target available on the host")
    print("Testing performance on CPU:")
    p1.test_performance()
    if has_gpu_target:
        print("Testing performance on GPU:")
        p2.test_performance()
    return 0
# A helper function to check if OpenCL, Metal or D3D12 is present on the
# host machine.
def find_gpu_target():
    # Start with a target suitable for the machine you're running this on.
    target = hl.get_host_target()
    features_to_try = []
    if target.os == hl.TargetOS.Windows:
        # Try D3D12 first; if that fails, try OpenCL.
        if struct.calcsize("P") == 8:
            # D3D12Compute support is only available on 64-bit systems at present.
            features_to_try.append(hl.TargetFeature.D3D12Compute)
        features_to_try.append(hl.TargetFeature.OpenCL)
    elif target.os == hl.TargetOS.OSX:
        # OS X doesn't update its OpenCL drivers, so they tend to be broken.
        # CUDA would also be a fine choice on machines with NVidia GPUs.
        features_to_try.append(hl.TargetFeature.Metal)
    else:
        features_to_try.append(hl.TargetFeature.OpenCL)
    # Uncomment the following lines to also try CUDA:
    # features_to_try.append(hl.TargetFeature.CUDA);
    for f in features_to_try:
        new_target = target.with_feature(f)
        if hl.host_supports_target_device(new_target):
            return new_target
    print(
        "Requested GPU(s) are not supported. (Do you have the proper hardware and/or driver installed?)"
    )
    return target
if __name__ == "__main__":
    main()
 |