1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#include "Halide.h"
namespace {
class ReactionDiffusionInit : public Halide::Generator<ReactionDiffusionInit> {
public:
Output<Buffer<float, 3>> output{"output"};
GeneratorParam<bool> threads{"threads", true};
void generate() {
output(x, y, c) = Halide::random_float();
}
void schedule() {
output.vectorize(x, natural_vector_size<float>());
if (threads) {
output.parallel(y, 8);
}
}
private:
Var x, y, xi, yi, c;
};
class ReactionDiffusionUpdate : public Halide::Generator<ReactionDiffusionUpdate> {
public:
Input<Buffer<float, 3>> state{"state"};
Input<int> mouse_x{"mouse_x"};
Input<int> mouse_y{"mouse_y"};
Input<int> frame{"frame"};
Output<Buffer<float, 3>> new_state{"new_state"};
GeneratorParam<bool> threads{"threads", false};
void generate() {
clamped = Halide::BoundaryConditions::repeat_edge(state);
blur_x(x, y, c) = (clamped(x - 2, y, c) +
clamped(x - 1, y, c) +
clamped(x, y, c) +
clamped(x + 1, y, c) +
clamped(x + 2, y, c));
blur_y(x, y, c) = (clamped(x, y - 2, c) +
clamped(x, y - 1, c) +
clamped(x, y, c) +
clamped(x, y + 1, c) +
clamped(x, y + 2, c));
blur(x, y, c) = (blur_x(x, y, c) + blur_y(x, y, c)) / 10;
Expr R = blur(x, y, 0);
Expr G = blur(x, y, 1);
Expr B = blur(x, y, 2);
// Push the colors outwards with a sigmoid
Expr s = 0.5f;
R *= (1 - s) + s * R * (3 - 2 * R);
G *= (1 - s) + s * G * (3 - 2 * G);
B *= (1 - s) + s * B * (3 - 2 * B);
// Reaction
Expr dR = B * (1 - R - G);
Expr dG = (1 - B) * (R - G);
Expr dB = 1 - B + 2 * G * R - R - G;
// Boost reaction rate using distance from mouse
Expr mx = (mouse_x - x);
Expr my = (mouse_y - y);
Expr boost = 5 * max(0, (1.f - (mx * mx + my * my) * 0.001f)) + 1;
R += dR * 0.14f * boost;
G += dG * 0.05f * boost;
B += dB * 0.065f * boost;
R = clamp(R, 0.0f, 1.0f);
G = clamp(G, 0.0f, 1.0f);
B = clamp(B, 0.0f, 1.0f);
new_state(x, y, c) = mux(c, {R, G, B});
// Noise at the edges
new_state(x, state.dim(1).min(), c) = random_float(frame) * 0.2f;
new_state(x, state.dim(1).max(), c) = random_float(frame) * 0.2f;
new_state(state.dim(0).min(), y, c) = random_float(frame) * 0.2f;
new_state(state.dim(0).max(), y, c) = random_float(frame) * 0.2f;
noise(x, y, c) = random_float(frame);
blurry_noise(x, y, c) = 0.25f * (noise(x, y, c) +
noise(x + 1, y, c) +
noise(x + 1, y + 1, c) +
noise(x, y + 1, c));
// Add some noise where the mouse is
Expr min_x = clamp(mouse_x - 10, 0, state.dim(0).extent() - 1);
Expr max_x = clamp(mouse_x + 10, 0, state.dim(0).extent() - 1);
Expr min_y = clamp(mouse_y - 10, 0, state.dim(1).extent() - 1);
Expr max_y = clamp(mouse_y + 10, 0, state.dim(1).extent() - 1);
clobber = RDom(min_x, max_x - min_x + 1, min_y, max_y - min_y + 1);
Expr dx = clobber.x - mouse_x;
Expr dy = clobber.y - mouse_y;
Expr radius = dx * dx + dy * dy;
new_state(clobber.x, clobber.y, c) = select(radius < 100.0f,
blurry_noise(clobber.x, clobber.y, c),
new_state(clobber.x, clobber.y, c));
}
void schedule() {
state.dim(2).set_bounds(0, 3);
new_state
.reorder(c, x, y)
.bound(c, 0, 3)
.unroll(c);
noise.compute_root()
.vectorize(x, natural_vector_size<float>());
new_state
.tile(x, y, xi, yi, 256, 8)
.vectorize(xi, natural_vector_size<float>());
for (int i = 0; i < 5; i++) {
new_state.update(i).unscheduled();
}
blur
.compute_at(new_state, xi)
.vectorize(x);
clamped
.store_at(new_state, x)
.compute_at(new_state, yi);
if (threads) {
new_state.parallel(y);
}
}
private:
Func blur_x, blur_y, blur, clamped, noise, blurry_noise;
Var x, y, xi, yi, c;
RDom clobber;
};
class ReactionDiffusionRender : public Halide::Generator<ReactionDiffusionRender> {
public:
Input<Buffer<float, 3>> state{"state"};
Output<Buffer<uint32_t, 2>> render{"render"};
GeneratorParam<bool> threads{"threads", false};
void generate() {
Func contour;
Expr v = state(x, y, c) * (1.01f - state(x, y, c)) * 4;
v *= v;
v *= v;
v = min(v, 1.0f);
contour(x, y, c) = v;
Expr c0 = contour(x, y, 0);
Expr c1 = contour(x, y, 1);
Expr c2 = contour(x, y, 2);
Expr R = min(c0, (c1 + c2) / 2);
Expr G = clamp((c1 + c0 + c2) / 2, 0.0f, 1.0f);
Expr B = max(c0, max(c1, c2));
R = cast<uint32_t>(R * 255) & 0xff;
G = cast<uint32_t>(G * 255) & 0xff;
B = cast<uint32_t>(B * 255) & 0xff;
Expr A = cast<uint32_t>(255);
Expr bgra = B | (G << 8) | (R << 16) | (A << 24);
render(x, y) = bgra;
}
void schedule() {
render
.vectorize(x, natural_vector_size<float>());
if (threads) {
render.parallel(y, 4);
}
}
private:
Var x, y, c, xi, yi;
};
} // namespace
HALIDE_REGISTER_GENERATOR(ReactionDiffusionInit, reaction_diffusion_init)
HALIDE_REGISTER_GENERATOR(ReactionDiffusionUpdate, reaction_diffusion_update)
HALIDE_REGISTER_GENERATOR(ReactionDiffusionRender, reaction_diffusion_render)
|