1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#include <cmath>
#include <cstdint>
#include <cstdio>
#ifdef __SSE2__
#include <emmintrin.h>
#elif __ARM_NEON
#include <arm_neon.h>
#endif
#include "HalideBuffer.h"
#include "halide_benchmark.h"
using namespace Halide::Runtime;
using namespace Halide::Tools;
double t;
Buffer<uint16_t, 2> blur(Buffer<uint16_t, 2> in) {
Buffer<uint16_t, 2> tmp(in.width() - 8, in.height());
Buffer<uint16_t, 2> out(in.width() - 8, in.height() - 2);
t = benchmark(10, 1, [&]() {
for (int y = 0; y < tmp.height(); y++)
for (int x = 0; x < tmp.width(); x++)
tmp(x, y) = (in(x, y) + in(x + 1, y) + in(x + 2, y)) / 3;
for (int y = 0; y < out.height(); y++)
for (int x = 0; x < out.width(); x++)
out(x, y) = (tmp(x, y) + tmp(x, y + 1) + tmp(x, y + 2)) / 3;
});
return out;
}
Buffer<uint16_t, 2> blur_fast(Buffer<uint16_t, 2> in) {
Buffer<uint16_t, 2> out(in.width() - 8, in.height() - 2);
t = benchmark(10, 1, [&]() {
#ifdef __SSE2__
__m128i one_third = _mm_set1_epi16(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < out.height(); yTile += 32) {
__m128i tmp[(128 / 8) * (32 + 2)];
for (int xTile = 0; xTile < out.width(); xTile += 128) {
__m128i *tmpPtr = tmp;
for (int y = 0; y < 32 + 2; y++) {
const uint16_t *inPtr = &(in(xTile, yTile + y));
for (int x = 0; x < 128; x += 8) {
__m128i a = _mm_load_si128((const __m128i *)(inPtr));
__m128i b = _mm_loadu_si128((const __m128i *)(inPtr + 1));
__m128i c = _mm_loadu_si128((const __m128i *)(inPtr + 2));
__m128i sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
__m128i avg = _mm_mulhi_epi16(sum, one_third);
_mm_store_si128(tmpPtr++, avg);
inPtr += 8;
}
}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
__m128i *outPtr = (__m128i *)(&(out(xTile, yTile + y)));
for (int x = 0; x < 128; x += 8) {
__m128i a = _mm_load_si128(tmpPtr + (2 * 128) / 8);
__m128i b = _mm_load_si128(tmpPtr + 128 / 8);
__m128i c = _mm_load_si128(tmpPtr++);
__m128i sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
__m128i avg = _mm_mulhi_epi16(sum, one_third);
_mm_store_si128(outPtr++, avg);
}
}
}
}
#elif __ARM_NEON
uint16x4_t one_third = vdup_n_u16(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < out.height(); yTile += 32) {
uint16x8_t tmp[(128 / 8) * (32 + 2)];
for (int xTile = 0; xTile < out.width(); xTile += 128) {
uint16_t *tmpPtr = (uint16_t *)tmp;
for (int y = 0; y < 32 + 2; y++) {
const uint16_t *inPtr = &(in(xTile, yTile + y));
for (int x = 0; x < 128; x += 8) {
uint16x8_t a = vld1q_u16(inPtr);
uint16x8_t b = vld1q_u16(inPtr + 1);
uint16x8_t c = vld1q_u16(inPtr + 2);
uint16x8_t sum = vaddq_u16(vaddq_u16(a, b), c);
uint16x4_t sumlo = vget_low_u16(sum);
uint16x4_t sumhi = vget_high_u16(sum);
uint16x4_t avglo = vshrn_n_u32(vmull_u16(sumlo, one_third), 16);
uint16x4_t avghi = vshrn_n_u32(vmull_u16(sumhi, one_third), 16);
uint16x8_t avg = vcombine_u16(avglo, avghi);
vst1q_u16(tmpPtr, avg);
tmpPtr += 8;
inPtr += 8;
}
}
tmpPtr = (uint16_t *)tmp;
for (int y = 0; y < 32; y++) {
uint16_t *outPtr = &(out(xTile, yTile + y));
for (int x = 0; x < 128; x += 8) {
uint16x8_t a = vld1q_u16(tmpPtr + (2 * 128));
uint16x8_t b = vld1q_u16(tmpPtr + 128);
uint16x8_t c = vld1q_u16(tmpPtr);
uint16x8_t sum = vaddq_u16(vaddq_u16(a, b), c);
uint16x4_t sumlo = vget_low_u16(sum);
uint16x4_t sumhi = vget_high_u16(sum);
uint16x4_t avglo = vshrn_n_u32(vmull_u16(sumlo, one_third), 16);
uint16x4_t avghi = vshrn_n_u32(vmull_u16(sumhi, one_third), 16);
uint16x8_t avg = vcombine_u16(avglo, avghi);
vst1q_u16(outPtr, avg);
tmpPtr += 8;
outPtr += 8;
}
}
}
}
#else
// No intrinsics enabled, do a naive thing.
for (int y = 0; y < out.height(); y++) {
for (int x = 0; x < out.width(); x++) {
int tmp[3] = {
(in(x, y) + in(x + 1, y) + in(x + 2, y)) / 3,
(in(x, y + 1) + in(x + 1, y + 1) + in(x + 2, y + 1)) / 3,
(in(x, y + 2) + in(x + 1, y + 2) + in(x + 2, y + 2)) / 3,
};
out(x, y) = (tmp[0] + tmp[1] + tmp[2]) / 3;
}
}
#endif
});
return out;
}
#include "halide_blur.h"
Buffer<uint16_t, 2> blur_halide(Buffer<uint16_t, 2> in) {
Buffer<uint16_t, 2> out(in.width() - 8, in.height() - 2);
// Call it once to initialize the halide runtime stuff
halide_blur(in, out);
// Copy-out result if it's device buffer and dirty.
out.copy_to_host();
t = benchmark(10, 1, [&]() {
// Compute the same region of the output as blur_fast (i.e., we're
// still being sloppy with boundary conditions)
halide_blur(in, out);
// Sync device execution if any.
out.device_sync();
});
out.copy_to_host();
return out;
}
int main(int argc, char **argv) {
const auto *md = halide_blur_metadata();
const bool is_hexagon = strstr(md->target, "hvx_128") || strstr(md->target, "hvx_64");
// The Hexagon simulator can't allocate as much memory as the above wants.
const int width = is_hexagon ? 648 : 2568;
const int height = is_hexagon ? 482 : 1922;
Buffer<uint16_t, 2> input(width, height);
for (int y = 0; y < input.height(); y++) {
for (int x = 0; x < input.width(); x++) {
input(x, y) = rand() & 0xfff;
}
}
Buffer<uint16_t, 2> blurry = blur(input);
double slow_time = t;
Buffer<uint16_t, 2> speedy = blur_fast(input);
double fast_time = t;
Buffer<uint16_t, 2> halide = blur_halide(input);
double halide_time = t;
printf("times: %f %f %f\n", slow_time, fast_time, halide_time);
for (int y = 64; y < input.height() - 64; y++) {
for (int x = 64; x < input.width() - 64; x++) {
if (blurry(x, y) != speedy(x, y) || blurry(x, y) != halide(x, y)) {
printf("difference at (%d,%d): %d %d %d\n", x, y, blurry(x, y), speedy(x, y), halide(x, y));
abort();
}
}
}
printf("Success!\n");
return 0;
}
|