1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
#include "Halide.h"
#include "halide_trace_config.h"
#include <stdint.h>
namespace {
using std::vector;
using namespace Halide;
using namespace Halide::ConciseCasts;
// Shared variables
Var x, y, c, yi, yo, yii, xi;
// Average two positive values rounding up
Expr avg(Expr a, Expr b) {
Type wider = a.type().with_bits(a.type().bits() * 2);
return cast(a.type(), (cast(wider, a) + b + 1) / 2);
}
Expr blur121(Expr a, Expr b, Expr c) {
return avg(avg(a, c), b);
}
Func interleave_x(Func a, Func b) {
Func out;
out(x, y) = select((x % 2) == 0, a(x / 2, y), b(x / 2, y));
return out;
}
Func interleave_y(Func a, Func b) {
Func out;
out(x, y) = select((y % 2) == 0, a(x, y / 2), b(x, y / 2));
return out;
}
class Demosaic : public Halide::Generator<Demosaic> {
public:
GeneratorParam<LoopLevel> intermed_compute_at{"intermed_compute_at", LoopLevel::inlined()};
GeneratorParam<LoopLevel> intermed_store_at{"intermed_store_at", LoopLevel::inlined()};
GeneratorParam<LoopLevel> output_compute_at{"output_compute_at", LoopLevel::inlined()};
// Inputs and outputs
Input<Func> deinterleaved{"deinterleaved", UInt(16), 3};
Output<Func> output{"output", Int(16), 3};
// Defines outputs using inputs
void generate() {
// These are the values we already know from the input
// x_y = the value of channel x at a site in the input of channel y
// gb refers to green sites in the blue rows
// gr refers to green sites in the red rows
// Give more convenient names to the four channels we know
Func r_r, g_gr, g_gb, b_b;
g_gr(x, y) = deinterleaved(x, y, 0);
r_r(x, y) = deinterleaved(x, y, 1);
b_b(x, y) = deinterleaved(x, y, 2);
g_gb(x, y) = deinterleaved(x, y, 3);
// These are the ones we need to interpolate
Func b_r, g_r, b_gr, r_gr, b_gb, r_gb, r_b, g_b;
// First calculate green at the red and blue sites
// Try interpolating vertically and horizontally. Also compute
// differences vertically and horizontally. Use interpolation in
// whichever direction had the smallest difference.
Expr gv_r = avg(g_gb(x, y - 1), g_gb(x, y));
Expr gvd_r = absd(g_gb(x, y - 1), g_gb(x, y));
Expr gh_r = avg(g_gr(x + 1, y), g_gr(x, y));
Expr ghd_r = absd(g_gr(x + 1, y), g_gr(x, y));
g_r(x, y) = select(ghd_r < gvd_r, gh_r, gv_r);
Expr gv_b = avg(g_gr(x, y + 1), g_gr(x, y));
Expr gvd_b = absd(g_gr(x, y + 1), g_gr(x, y));
Expr gh_b = avg(g_gb(x - 1, y), g_gb(x, y));
Expr ghd_b = absd(g_gb(x - 1, y), g_gb(x, y));
g_b(x, y) = select(ghd_b < gvd_b, gh_b, gv_b);
// Next interpolate red at gr by first interpolating, then
// correcting using the error green would have had if we had
// interpolated it in the same way (i.e. add the second derivative
// of the green channel at the same place).
Expr correction;
correction = g_gr(x, y) - avg(g_r(x, y), g_r(x - 1, y));
r_gr(x, y) = correction + avg(r_r(x - 1, y), r_r(x, y));
// Do the same for other reds and blues at green sites
correction = g_gr(x, y) - avg(g_b(x, y), g_b(x, y - 1));
b_gr(x, y) = correction + avg(b_b(x, y), b_b(x, y - 1));
correction = g_gb(x, y) - avg(g_r(x, y), g_r(x, y + 1));
r_gb(x, y) = correction + avg(r_r(x, y), r_r(x, y + 1));
correction = g_gb(x, y) - avg(g_b(x, y), g_b(x + 1, y));
b_gb(x, y) = correction + avg(b_b(x, y), b_b(x + 1, y));
// Now interpolate diagonally to get red at blue and blue at
// red. Hold onto your hats; this gets really fancy. We do the
// same thing as for interpolating green where we try both
// directions (in this case the positive and negative diagonals),
// and use the one with the lowest absolute difference. But we
// also use the same trick as interpolating red and blue at green
// sites - we correct our interpolations using the second
// derivative of green at the same sites.
correction = g_b(x, y) - avg(g_r(x, y), g_r(x - 1, y + 1));
Expr rp_b = correction + avg(r_r(x, y), r_r(x - 1, y + 1));
Expr rpd_b = absd(r_r(x, y), r_r(x - 1, y + 1));
correction = g_b(x, y) - avg(g_r(x - 1, y), g_r(x, y + 1));
Expr rn_b = correction + avg(r_r(x - 1, y), r_r(x, y + 1));
Expr rnd_b = absd(r_r(x - 1, y), r_r(x, y + 1));
r_b(x, y) = select(rpd_b < rnd_b, rp_b, rn_b);
// Same thing for blue at red
correction = g_r(x, y) - avg(g_b(x, y), g_b(x + 1, y - 1));
Expr bp_r = correction + avg(b_b(x, y), b_b(x + 1, y - 1));
Expr bpd_r = absd(b_b(x, y), b_b(x + 1, y - 1));
correction = g_r(x, y) - avg(g_b(x + 1, y), g_b(x, y - 1));
Expr bn_r = correction + avg(b_b(x + 1, y), b_b(x, y - 1));
Expr bnd_r = absd(b_b(x + 1, y), b_b(x, y - 1));
b_r(x, y) = select(bpd_r < bnd_r, bp_r, bn_r);
// Resulting color channels
Func r, g, b;
// Interleave the resulting channels
r = interleave_y(interleave_x(r_gr, r_r),
interleave_x(r_b, r_gb));
g = interleave_y(interleave_x(g_gr, g_r),
interleave_x(g_b, g_gb));
b = interleave_y(interleave_x(b_gr, b_r),
interleave_x(b_b, b_gb));
// It's possible that some of the final additions of
// correction terms underflowed, so reinterpret the output as
// signed.
output(x, y, c) = cast<int16_t>(mux(c, {r(x, y), g(x, y), b(x, y)}));
// These are the stencil stages we want to schedule
// separately. Everything else we'll just inline.
intermediates.push_back(g_r);
intermediates.push_back(g_b);
}
void schedule() {
Pipeline p(output);
if (using_autoscheduler()) {
// blank
} else if (get_target().has_gpu_feature()) {
Var xi, yi;
for (Func f : intermediates) {
f.compute_at(intermed_compute_at).gpu_threads(x, y);
}
output.compute_at(output_compute_at)
.unroll(x, 2)
.gpu_threads(x, y)
.reorder(c, x, y)
.unroll(c);
} else {
int vec = get_target().natural_vector_size(UInt(16));
bool use_hexagon = get_target().has_feature(Target::HVX);
for (Func f : intermediates) {
f.compute_at(intermed_compute_at)
.store_at(intermed_store_at)
.vectorize(x, 2 * vec, TailStrategy::RoundUp)
.fold_storage(y, 4);
}
intermediates[1].compute_with(
intermediates[0], x,
{{x, LoopAlignStrategy::AlignStart}, {y, LoopAlignStrategy::AlignStart}});
output.compute_at(output_compute_at)
.vectorize(x)
.unroll(y)
.reorder(c, x, y)
.unroll(c);
if (use_hexagon) {
output.hexagon();
for (Func f : intermediates) {
f.align_storage(x, vec);
}
}
}
/* Optional tags to specify layout for HalideTraceViz */
Halide::Trace::FuncConfig cfg;
cfg.pos = {860, 340 - 220};
cfg.max = 1024;
for (Func f : intermediates) {
std::string label = f.name();
std::replace(label.begin(), label.end(), '_', '@');
cfg.pos.y += 220;
cfg.labels = {{label}};
f.add_trace_tag(cfg.to_trace_tag());
}
}
private:
// Intermediate stencil stages to schedule
vector<Func> intermediates;
};
class CameraPipe : public Halide::Generator<CameraPipe> {
public:
// Parameterized output type, because LLVM PTX (GPU) backend does not
// currently allow 8-bit computations
GeneratorParam<Type> result_type{"result_type", UInt(8)};
Input<Buffer<uint16_t, 2>> input{"input"};
Input<Buffer<float, 2>> matrix_3200{"matrix_3200"};
Input<Buffer<float, 2>> matrix_7000{"matrix_7000"};
Input<float> color_temp{"color_temp"};
Input<float> gamma{"gamma"};
Input<float> contrast{"contrast"};
Input<float> sharpen_strength{"sharpen_strength"};
Input<int> blackLevel{"blackLevel"};
Input<int> whiteLevel{"whiteLevel"};
Output<Buffer<uint8_t, 3>> processed{"processed"};
void generate();
private:
Func hot_pixel_suppression(Func input);
Func deinterleave(Func raw);
Func apply_curve(Func input);
Func color_correct(Func input);
Func sharpen(Func input);
};
Func CameraPipe::hot_pixel_suppression(Func input) {
Expr a = max(input(x - 2, y), input(x + 2, y),
input(x, y - 2), input(x, y + 2));
Func denoised;
denoised(x, y) = clamp(input(x, y), 0, a);
return denoised;
}
Func CameraPipe::deinterleave(Func raw) {
// Deinterleave the color channels
Func deinterleaved("deinterleaved");
deinterleaved(x, y, c) = mux(c,
{raw(2 * x, 2 * y),
raw(2 * x + 1, 2 * y),
raw(2 * x, 2 * y + 1),
raw(2 * x + 1, 2 * y + 1)});
return deinterleaved;
}
Func CameraPipe::color_correct(Func input) {
// Get a color matrix by linearly interpolating between two
// calibrated matrices using inverse kelvin.
Expr kelvin = color_temp;
Func matrix;
Expr alpha = (1.0f / kelvin - 1.0f / 3200) / (1.0f / 7000 - 1.0f / 3200);
Expr val = (matrix_3200(x, y) * alpha + matrix_7000(x, y) * (1 - alpha));
matrix(x, y) = cast<int16_t>(val * 256.0f); // Q8.8 fixed point
if (!using_autoscheduler()) {
matrix.compute_root();
if (get_target().has_gpu_feature()) {
matrix.gpu_single_thread();
}
}
Func corrected;
Expr ir = cast<int32_t>(input(x, y, 0));
Expr ig = cast<int32_t>(input(x, y, 1));
Expr ib = cast<int32_t>(input(x, y, 2));
Expr r = matrix(3, 0) + matrix(0, 0) * ir + matrix(1, 0) * ig + matrix(2, 0) * ib;
Expr g = matrix(3, 1) + matrix(0, 1) * ir + matrix(1, 1) * ig + matrix(2, 1) * ib;
Expr b = matrix(3, 2) + matrix(0, 2) * ir + matrix(1, 2) * ig + matrix(2, 2) * ib;
r = cast<int16_t>(r / 256);
g = cast<int16_t>(g / 256);
b = cast<int16_t>(b / 256);
corrected(x, y, c) = mux(c, {r, g, b});
return corrected;
}
Func CameraPipe::apply_curve(Func input) {
// copied from FCam
Func curve("curve");
Expr minRaw = 0 + blackLevel;
Expr maxRaw = whiteLevel;
// How much to upsample the LUT by when sampling it.
int lutResample = 1;
if (get_target().has_feature(Target::HVX)) {
// On HVX, LUT lookups are much faster if they are to LUTs not
// greater than 256 elements, so we reduce the tonemap to 256
// elements and use linear interpolation to upsample it.
lutResample = 8;
}
minRaw /= lutResample;
maxRaw /= lutResample;
Expr invRange = 1.0f / (maxRaw - minRaw);
Expr b = 2.0f - pow(2.0f, contrast / 100.0f);
Expr a = 2.0f - 2.0f * b;
// Get a linear luminance in the range 0-1
Expr xf = clamp(cast<float>(x - minRaw) * invRange, 0.0f, 1.0f);
// Gamma correct it
Expr g = pow(xf, 1.0f / gamma);
// Apply a piecewise quadratic contrast curve
Expr z = select(g > 0.5f,
1.0f - (a * (1.0f - g) * (1.0f - g) + b * (1.0f - g)),
a * g * g + b * g);
// Convert to 8 bit and save
Expr val = cast(result_type, clamp(z * 255.0f + 0.5f, 0.0f, 255.0f));
// makeLUT add guard band outside of (minRaw, maxRaw]:
curve(x) = select(x <= minRaw, 0, select(x > maxRaw, 255, val));
if (!using_autoscheduler()) {
// It's a LUT, compute it once ahead of time.
curve.compute_root();
if (get_target().has_gpu_feature()) {
Var xi;
curve.gpu_tile(x, xi, 32);
}
}
/* Optional tags to specify layout for HalideTraceViz */
{
Halide::Trace::FuncConfig cfg;
cfg.labels = {{"tone curve"}};
cfg.pos = {580, 1000};
curve.add_trace_tag(cfg.to_trace_tag());
}
Func curved;
if (lutResample == 1) {
// Use clamp to restrict size of LUT as allocated by compute_root
curved(x, y, c) = curve(clamp(input(x, y, c), 0, 1023));
} else {
// Use linear interpolation to sample the LUT.
Expr in = input(x, y, c);
Expr u0 = in / lutResample;
Expr u = in % lutResample;
Expr y0 = curve(clamp(u0, 0, 127));
Expr y1 = curve(clamp(u0 + 1, 0, 127));
curved(x, y, c) = cast<uint8_t>((cast<uint16_t>(y0) * lutResample + (y1 - y0) * u) / lutResample);
}
return curved;
}
Func CameraPipe::sharpen(Func input) {
// Convert the sharpening strength to 2.5 fixed point. This allows sharpening in the range [0, 4].
Func sharpen_strength_x32("sharpen_strength_x32");
sharpen_strength_x32() = u8_sat(sharpen_strength * 32);
if (!using_autoscheduler()) {
sharpen_strength_x32.compute_root();
if (get_target().has_gpu_feature()) {
sharpen_strength_x32.gpu_single_thread();
}
}
/* Optional tags to specify layout for HalideTraceViz */
{
Halide::Trace::FuncConfig cfg;
cfg.labels = {{"sharpen strength"}};
cfg.pos = {10, 1000};
sharpen_strength_x32.add_trace_tag(cfg.to_trace_tag());
}
// Make an unsharp mask by blurring in y, then in x.
Func unsharp_y("unsharp_y");
unsharp_y(x, y, c) = blur121(input(x, y - 1, c), input(x, y, c), input(x, y + 1, c));
Func unsharp("unsharp");
unsharp(x, y, c) = blur121(unsharp_y(x - 1, y, c), unsharp_y(x, y, c), unsharp_y(x + 1, y, c));
Func mask("mask");
mask(x, y, c) = cast<int16_t>(input(x, y, c)) - cast<int16_t>(unsharp(x, y, c));
// Weight the mask with the sharpening strength, and add it to the
// input to get the sharpened result.
Func sharpened("sharpened");
sharpened(x, y, c) = u8_sat(input(x, y, c) + (mask(x, y, c) * sharpen_strength_x32()) / 32);
return sharpened;
}
void CameraPipe::generate() {
// shift things inwards to give us enough padding on the
// boundaries so that we don't need to check bounds. We're going
// to make a 2560x1920 output image, just like the FCam pipe, so
// shift by 16, 12.
Func shifted;
shifted(x, y) = input(x + 16, y + 12);
Func denoised = hot_pixel_suppression(shifted);
Func deinterleaved = deinterleave(denoised);
auto demosaiced = create<Demosaic>();
demosaiced->apply(deinterleaved);
Func corrected = color_correct(demosaiced->output);
Func curved = apply_curve(corrected);
processed(x, y, c) = sharpen(curved)(x, y, c);
/* ESTIMATES */
// (This can be useful in conjunction with RunGen and benchmarks as well
// as auto-schedule, so we do it in all cases.)
input.set_estimates({{0, 2592}, {0, 1968}});
matrix_3200.set_estimates({{0, 4}, {0, 3}});
matrix_7000.set_estimates({{0, 4}, {0, 3}});
color_temp.set_estimate(3700);
gamma.set_estimate(2.0);
contrast.set_estimate(50);
sharpen_strength.set_estimate(1.0);
blackLevel.set_estimate(25);
whiteLevel.set_estimate(1023);
processed.set_estimates({{0, 2592}, {0, 1968}, {0, 3}});
// Schedule
if (using_autoscheduler()) {
// nothing
} else if (get_target().has_gpu_feature()) {
// We can generate slightly better code if we know the output is even-sized
if (!using_autoscheduler()) {
// TODO: The autoscheduler really ought to be able to
// accommodate bounds on the output Func.
Expr out_width = processed.width();
Expr out_height = processed.height();
processed.bound(c, 0, 3)
.bound(x, 0, (out_width / 2) * 2)
.bound(y, 0, (out_height / 2) * 2);
}
Var xi, yi, xii, xio;
/* These tile factors obtain 1391us on a gtx 980. */
int tile_x = 28;
int tile_y = 12;
if (get_target().has_feature(Target::D3D12Compute)) {
// D3D12 SM 5.1 can only utilize a limited amount of
// shared memory, so we use a slightly smaller
// tile size.
tile_x = 20;
tile_y = 12;
}
processed.compute_root()
.reorder(c, x, y)
.unroll(x, 2)
.gpu_tile(x, y, xi, yi, tile_x, tile_y);
curved.compute_at(processed, x)
.unroll(x, 2)
.gpu_threads(x, y);
corrected.compute_at(processed, x)
.unroll(x, 2)
.gpu_threads(x, y);
demosaiced->output_compute_at.set({processed, x});
demosaiced->intermed_compute_at.set({processed, x});
denoised.compute_at(processed, x)
.tile(x, y, xi, yi, 2, 2)
.unroll(xi)
.unroll(yi)
.gpu_threads(x, y);
deinterleaved.compute_at(processed, x)
.unroll(x, 2)
.gpu_threads(x, y)
.reorder(c, x, y)
.unroll(c);
} else {
Expr out_width = processed.width();
Expr out_height = processed.height();
// Depending on the HVX generation, we need 2 or 4 threads
// to saturate HVX with work. For simplicity, we'll just
// stick to 4 threads. On balance, the overhead should
// not be much for the 2 extra threads that we create
// on cores that have only two HVX contexts.
Expr strip_size;
if (get_target().has_feature(Target::HVX)) {
strip_size = processed.dim(1).extent() / 4;
} else {
strip_size = 32;
}
strip_size = (strip_size / 2) * 2;
int vec = get_target().natural_vector_size(UInt(16));
if (get_target().has_feature(Target::HVX)) {
vec = 64;
}
processed
.compute_root()
.reorder(c, x, y)
.split(y, yi, yii, 2, TailStrategy::RoundUp)
.split(yi, yo, yi, strip_size / 2)
.vectorize(x, 2 * vec, TailStrategy::RoundUp)
.unroll(c)
.parallel(yo);
denoised
.compute_at(processed, yi)
.store_at(processed, yo)
.prefetch(input, y, y, 2)
.fold_storage(y, 4)
.tile(x, y, x, y, xi, yi, 2 * vec, 2)
.vectorize(xi)
.unroll(yi);
deinterleaved
.compute_at(processed, yi)
.store_at(processed, yo)
.fold_storage(y, 4)
.reorder(c, x, y)
.vectorize(x, 2 * vec, TailStrategy::RoundUp)
.unroll(c);
curved
.compute_at(processed, yi)
.store_at(processed, yo)
.reorder(c, x, y)
.tile(x, y, x, y, xi, yi, 2 * vec, 2, TailStrategy::RoundUp)
.vectorize(xi)
.unroll(yi)
.unroll(c);
corrected
.compute_at(curved, x)
.reorder(c, x, y)
.vectorize(x)
.unroll(c);
demosaiced->intermed_compute_at.set({processed, yi});
demosaiced->intermed_store_at.set({processed, yo});
demosaiced->output_compute_at.set({curved, x});
if (get_target().has_feature(Target::HVX)) {
processed.hexagon();
denoised.align_storage(x, vec);
deinterleaved.align_storage(x, vec);
corrected.align_storage(x, vec);
}
// We can generate slightly better code if we know the splits divide the extent.
processed
.bound(c, 0, 3)
.bound(x, 0, ((out_width) / (2 * vec)) * (2 * vec))
.bound(y, 0, (out_height / strip_size) * strip_size);
/* Optional tags to specify layout for HalideTraceViz */
{
Halide::Trace::FuncConfig cfg;
cfg.max = 1024;
cfg.pos = {10, 348};
cfg.labels = {{"input"}};
input.add_trace_tag(cfg.to_trace_tag());
cfg.pos = {305, 360};
cfg.labels = {{"denoised"}};
denoised.add_trace_tag(cfg.to_trace_tag());
cfg.pos = {580, 120};
const int y_offset = 220;
cfg.strides = {{1, 0}, {0, 1}, {0, y_offset}};
cfg.labels = {
{"gr", {0, 0 * y_offset}},
{"r", {0, 1 * y_offset}},
{"b", {0, 2 * y_offset}},
{"gb", {0, 3 * y_offset}},
};
deinterleaved.add_trace_tag(cfg.to_trace_tag());
cfg.color_dim = 2;
cfg.strides = {{1, 0}, {0, 1}, {0, 0}};
cfg.pos = {1140, 360};
cfg.labels = {{"demosaiced"}};
processed.add_trace_tag(cfg.to_trace_tag());
cfg.pos = {1400, 360};
cfg.labels = {{"color-corrected"}};
corrected.add_trace_tag(cfg.to_trace_tag());
cfg.max = 256;
cfg.pos = {1660, 360};
cfg.labels = {{"gamma-corrected"}};
curved.add_trace_tag(cfg.to_trace_tag());
}
}
};
} // namespace
HALIDE_REGISTER_GENERATOR(CameraPipe, camera_pipe)
|