File: fft.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (1121 lines) | stat: -rw-r--r-- 38,383 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
// This FFT is an implementation of the algorithm described in
// http://research.microsoft.com/pubs/131400/fftgpusc08.pdf. This
// algorithm is more well suited to Halide than in-place algorithms.

#include "fft.h"

#include <cassert>
#include <cmath>
#include <cstddef>
#include <limits>
#include <map>
#include <ostream>
#include <string>

#include "funct.h"

using std::string;
using std::vector;

using namespace Halide;
using namespace Halide::BoundaryConditions;

namespace {

#ifndef M_PI
#define M_PI 3.14159265358979310000
#endif
const float kPi = static_cast<float>(M_PI);

// This variable is used throughout the FFT code. It represents groups of
// columns which are being transformed.
Var group("g");

// Some useful constant complex numbers. Note this is defined as an integer, but
// can be transparently used with float ComplexExprs.
const ComplexExpr j(Expr(0), Expr(1));

// Make an undef ComplexExpr of the specified type.
ComplexExpr undef_z(Type t = Float(32)) {
    return ComplexExpr(undef(t), undef(t));
}

int gcd(int x, int y) {
    while (y != 0) {
        int r = x % y;
        x = y;
        y = r;
    }
    return x;
}

int lcm(int x, int y) {
    return std::min(x, y) * (std::max(x, y) / gcd(x, y));
}

// Compute the product of the integers in R.
int product(const vector<int> &R) {
    int p = 1;
    for (size_t i = 0; i < R.size(); i++) {
        p *= R[i];
    }
    return p;
}

// These tersely named functions concatenate vectors of Var/Expr for use
// in generating argument lists to Halide functions. They are named to avoid
// bloating the code, since these are used extremely frequently, and often many
// times within one line.
vector<Var> A(vector<Var> l, const vector<Var> &r) {
    for (const Var &i : r) {
        l.push_back(i);
    }
    return l;
}

template<typename T>
vector<Expr> A(vector<Expr> l, const vector<T> &r) {
    for (const Var &i : r) {
        l.push_back(i);
    }
    return l;
}

// Get call references to the first N elements of dimension dim of x. If temps
// is set, grab references to elements [-N, -1] instead.
typedef FuncRefT<ComplexExpr> ComplexFuncRef;
vector<ComplexFuncRef> get_func_refs(ComplexFunc x, int N, bool temps = false) {
    vector<Var> args(x.args());
    args.erase(args.begin());

    vector<ComplexFuncRef> refs;
    for (int i = 0; i < N; i++) {
        if (temps) {
            refs.push_back(x(A({Expr(-i - 1)}, args)));
        } else {
            refs.push_back(x(A({Expr(i)}, args)));
        }
    }
    return refs;
}

// Evaluate a complex multiplication where b = re_b + j*im_b
ComplexExpr mul(ComplexExpr a, float re_b, float im_b) {
    return a * ComplexExpr(re_b, im_b);
}

// Specializations for some small DFTs of the first dimension of a
// Func f.
ComplexFunc dft2(ComplexFunc f, const string &prefix) {
    Type type = f.types()[0];

    ComplexFunc F(prefix + "X2");
    F(f.args()) = undef_z(type);

    vector<ComplexFuncRef> x = get_func_refs(f, 2);
    vector<ComplexFuncRef> X = get_func_refs(F, 2);

    X[0] = x[0] + x[1];
    X[1] = x[0] - x[1];

    return F;
}

ComplexFunc dft4(ComplexFunc f, int sign, const string &prefix) {
    Type type = f.types()[0];

    ComplexFunc F(prefix + "X4");
    F(f.args()) = undef_z(type);

    vector<ComplexFuncRef> x = get_func_refs(f, 4);
    vector<ComplexFuncRef> X = get_func_refs(F, 4);
    vector<ComplexFuncRef> T = get_func_refs(F, 2, true);
    // We can re-use these two temps. T[0], T[2] and T[1], T[3] do not have
    // overlapping lifetime.
    T.push_back(T[1]);
    T.push_back(T[0]);

    T[0] = (x[0] + x[2]);
    T[2] = (x[1] + x[3]);
    X[0] = (T[0] + T[2]);
    X[2] = (T[0] - T[2]);

    T[1] = (x[0] - x[2]);
    T[3] = (x[1] - x[3]) * j * sign;
    X[1] = (T[1] + T[3]);
    X[3] = (T[1] - T[3]);

    return F;
}

ComplexFunc dft6(ComplexFunc f, int sign, const string &prefix) {
    const float re_W1_3 = -0.5f;
    const float im_W1_3 = sign * 0.866025404f;

    ComplexExpr W1_3(re_W1_3, im_W1_3);
    ComplexExpr W2_3(re_W1_3, -im_W1_3);
    ComplexExpr W4_3 = W1_3;

    Type type = f.types()[0];

    ComplexFunc F(prefix + "X8");
    F(f.args()) = undef_z(type);

    vector<ComplexFuncRef> x = get_func_refs(f, 6);
    vector<ComplexFuncRef> X = get_func_refs(F, 6);
    vector<ComplexFuncRef> T = get_func_refs(F, 6, true);

    // Prime factor FFT, N=2*3, no twiddle factors!
    T[0] = (x[0] + x[3]);
    T[3] = (x[0] - x[3]);
    T[1] = (x[1] + x[4]);
    T[4] = (x[1] - x[4]);
    T[2] = (x[2] + x[5]);
    T[5] = (x[2] - x[5]);

    X[0] = T[0] + T[2] + T[1];
    X[4] = T[0] + T[2] * W1_3 + T[1] * W2_3;
    X[2] = T[0] + T[2] * W2_3 + T[1] * W4_3;

    X[3] = T[3] + T[5] - T[4];
    X[1] = T[3] + T[5] * W1_3 - T[4] * W2_3;
    X[5] = T[3] + T[5] * W2_3 - T[4] * W4_3;

    return F;
}

ComplexFunc dft8(ComplexFunc f, int sign, const string &prefix) {
    const float sqrt2_2 = 0.70710678f;

    Type type = f.types()[0];

    ComplexFunc F(prefix + "X8");
    F(f.args()) = undef_z(type);

    vector<ComplexFuncRef> x = get_func_refs(f, 8);
    vector<ComplexFuncRef> X = get_func_refs(F, 8);
    vector<ComplexFuncRef> T = get_func_refs(F, 8, true);

    X[0] = (x[0] + x[4]);
    X[2] = (x[2] + x[6]);
    T[0] = (X[0] + X[2]);
    T[2] = (X[0] - X[2]);

    X[1] = (x[0] - x[4]);
    X[3] = (x[2] - x[6]) * j * sign;
    T[1] = (X[1] + X[3]);
    T[3] = (X[1] - X[3]);

    X[4] = (x[1] + x[5]);
    X[6] = (x[3] + x[7]);
    T[4] = (X[4] + X[6]);
    T[6] = (X[4] - X[6]) * j * sign;

    X[5] = (x[1] - x[5]);
    X[7] = (x[3] - x[7]) * j * sign;
    T[5] = mul(X[5] + X[7], sqrt2_2, sign * sqrt2_2);
    T[7] = mul(X[5] - X[7], -sqrt2_2, sign * sqrt2_2);

    X[0] = (T[0] + T[4]);
    X[1] = (T[1] + T[5]);
    X[2] = (T[2] + T[6]);
    X[3] = (T[3] + T[7]);
    X[4] = (T[0] - T[4]);
    X[5] = (T[1] - T[5]);
    X[6] = (T[2] - T[6]);
    X[7] = (T[3] - T[7]);

    return F;
}

// Compute the complex DFT of size N on dimension 0 of x.
ComplexFunc dftN(ComplexFunc x, int N, int sign, const string &prefix) {
    vector<Var> args(x.args());
    args.erase(args.begin());

    Var n("n");
    ComplexFunc X(prefix + "XN");
    if (N < 10) {
        // If N is small, unroll the loop.
        ComplexExpr dft = x(A({Expr(0)}, args));
        for (int k = 1; k < N; k++) {
            dft += expj((sign * 2 * kPi * k * n) / N) * x(A({Expr(k)}, args));
        }
        X(A({n}, args)) = dft;
    } else {
        // If N is larger, we really shouldn't be using this algorithm for the DFT anyways.
        RDom k(0, N);
        X(A({n}, args)) = sum(expj((sign * 2 * kPi * k * n) / N) * x(A({k}, args)));
    }
    X.unroll(n);
    return X;
}

ComplexFunc dft1d_c2c(ComplexFunc x, int N, int sign,
                      const string &prefix) {
    switch (N) {
    case 2:
        return dft2(x, prefix);
    case 4:
        return dft4(x, sign, prefix);
    case 6:
        return dft6(x, sign, prefix);
    case 8:
        return dft8(x, sign, prefix);
    default:
        return dftN(x, N, sign, prefix);
    }
}

// Map to remember previously computed twiddle factors.
typedef std::map<int, ComplexFunc> TwiddleFactorSet;

// Return a function defining the twiddle factors.
ComplexFunc twiddle_factors(int N, Expr gain, int sign,
                            const string &prefix,
                            TwiddleFactorSet *cache) {
    // If the gain is one, we can use the cache. Otherwise, always define a new
    // function. Generally, any given FFT will only have one set of twiddle
    // factors where gain != 1.
    ComplexFunc W(prefix + "W");
    if (is_const_one(gain)) {
        W = (*cache)[N];
    }
    if (!W.defined()) {
        Var n("n");
        W(n) = expj((sign * 2 * kPi * n) / N) * gain;
        W.compute_root();
    }

    return W;
}

// Compute the N point DFT of dimension 1 (columns) of x using
// radix R.
ComplexFunc fft_dim1(ComplexFunc x,
                     const vector<int> &NR,
                     int sign,
                     int extent_0,
                     Expr gain,
                     bool parallel,
                     const string &prefix,
                     const Target &target,
                     TwiddleFactorSet *twiddle_cache) {
    int N = product(NR);

    vector<Var> args = x.args();
    Var n0(args[0]), n1(args[1]);
    args.erase(args.begin());
    args.erase(args.begin());

    vector<std::pair<Func, RDom>> stages;

    RVar r_, s_;
    int S = 1;
    int vector_width = 1;
    for (size_t i = 0; i < NR.size(); i++) {
        int R = NR[i];
        assert(R != 1);

        std::stringstream stage_id;
        stage_id << prefix;
        if (S == N / R) {
            stage_id << "fft1";
        } else {
            stage_id << "x";
        }
        stage_id << "_S" << S << "_R" << R << "_" << n1.name();

        ComplexFunc exchange(stage_id.str());
        Var r("r"), s("s");

        // Load the points from each subtransform and apply the
        // twiddle factors. Twiddle factors for S = 1 are all expj(0) = 1.
        ComplexFunc v("v_" + stage_id.str());
        ComplexExpr x_rs = x(A({n0, s + r * (N / R)}, args));
        if (S > 1) {
            x_rs = cast<float>(x_rs);
            ComplexFunc W = twiddle_factors(R * S, gain, sign, prefix, twiddle_cache);
            v(A({r, s, n0}, args)) = select(r > 0, likely(x_rs * W(r * (s % S))), x_rs * gain);

            // Set the gain to 1 so it is only applied once.
            gain = 1.0f;
        } else {
            v(A({r, s, n0}, args)) = x_rs;
        }

        // The vector width is the least common multiple of the previous vector
        // width and the natural vector size for this stage.
        vector_width = lcm(vector_width, target.natural_vector_size(v.types()[0]));

        // Compute the R point DFT of the subtransform.
        ComplexFunc V = dft1d_c2c(v, R, sign, prefix);

        // Write the subtransform and use it as input to the next
        // pass. Since the pure stage is undef, we explicitly generate the
        // arg list (because we can't use placeholders in an undef
        // definition).
        exchange(A({n0, n1}, args)) = undef_z(V.types()[0]);

        RDom rs(0, R, 0, N / R);
        r_ = rs.x;
        s_ = rs.y;
        ComplexExpr V_rs = V(A({r_, s_, n0}, args));
        if (S == N / R) {
            // In case we haven't yet applied the requested gain (i.e. there were no
            // twiddle factor steps), do so now. If gain is one, this will be a no-op.
            V_rs = V_rs * gain;
            gain = 1.0f;
        }
        exchange(A({n0, ((s_ / S) * R * S) + (s_ % S) + (r_ * S)}, args)) = V_rs;
        exchange.bound(n1, 0, N);

        if (S > 1) {
            v.compute_at(exchange, s_).unroll(r);
            v.reorder_storage(n0, r, s);
        } else {
            // On the first stage, the twiddle factors are 1, so we can inline this (no-op).
        }

        V.compute_at(exchange, s_);
        V.reorder_storage(V.args()[2], V.args()[0], V.args()[1]);

        // The last stage needs explicit vectorization, because it doesn't get computed
        // at the vectorized context exchange (below).
        if (S == N / R) {
            if (S > 1) {
                v.vectorize(n0);
            }
            V.vectorize(V.args()[2]);
            for (int i = 0; i < V.num_update_definitions(); i++) {
                V.update(i).vectorize(V.args()[2]);
            }
        }

        exchange.update().unroll(r_);
        // Remember this stage for scheduling later.
        stages.push_back({exchange, rs});

        x = exchange;
        S *= R;
    }

    // Ensure that the vector width divides the vectorization dimension extent.
    vector_width = gcd(vector_width, extent_0);

    // Split the tile into groups of DFTs, and vectorize within the
    // group.
    x.update()
        .split(n0, group, n0, vector_width)
        .reorder(n0, r_, s_, group)
        .vectorize(n0);
    if (parallel) {
        x.update().parallel(group);
    }
    for (size_t i = 0; i + 1 < stages.size(); i++) {
        Func stage = stages[i].first;
        stage.compute_at(x, group).update().vectorize(n0);
    }

    return x;
}

// transpose the first two dimensions of x.
template<typename FuncType>
FuncType transpose(FuncType f) {
    vector<Halide::Var> argsT(f.args());
    std::swap(argsT[0], argsT[1]);
    FuncType fT;
    fT(argsT) = f(f.args());
    return fT;
}

template<typename FuncType>
std::pair<FuncType, FuncType> tiled_transpose(FuncType f, int max_tile_size,
                                              const Target &target,
                                              const string &prefix,
                                              bool always_tile = false) {
    // ARM can do loads of up to stride 4. We can use these loads to write a more
    // efficient transpose. The strategy is to break the transpose into 4x4 tiles,
    // transpose the tiles themselves (dense vector load/stores), then transpose
    // the data within each tile (stride 4 loads).
    if (target.arch != Target::ARM && !always_tile) {
        return {transpose(f), FuncType()};
    }

    const int tile_size =
        std::min(max_tile_size, target.natural_vector_size(f.types()[0]));

    vector<Var> args = f.args();
    Var x(args[0]), y(args[1]);
    args.erase(args.begin());
    args.erase(args.begin());

    Var xo(x.name() + "o");
    Var yo(y.name() + "o");

    // Break the transposed DFT into 4x4 tiles.
    FuncType f_tiled(prefix + "tiled");
    f_tiled(A({x, y, xo, yo}, args)) = f(A({xo * tile_size + x, yo * tile_size + y}, args));

    // transpose the values within each tile.
    FuncType f_tiledT(prefix + "tiledT");
    f_tiledT(A({y, x, xo, yo}, args)) = f_tiled(A({x, y, xo, yo}, args));

    FuncType fT_tiled(prefix + "T_tiled");
    fT_tiled(A({y, x, yo, xo}, args)) = f_tiledT(A({y, x, xo, yo}, args));

    // Produce the untiled result.
    FuncType fT(prefix + "T");
    fT(A({y, x}, args)) = fT_tiled(A({y % tile_size, x % tile_size, y / tile_size, x / tile_size}, args));

    f_tiledT
        .vectorize(x, tile_size)
        .unroll(y, tile_size);

    return {fT, f_tiledT};
}

}  // namespace

ComplexFunc fft2d_c2c(ComplexFunc x,
                      vector<int> R0,
                      vector<int> R1,
                      int sign,
                      const Target &target,
                      const Fft2dDesc &desc) {
    string prefix = desc.name.empty() ? "c2c_" : desc.name + "_";

    int N0 = product(R0);
    int N1 = product(R1);

    // Get the innermost variable outside the FFT.
    Var outer = Var::outermost();
    if (x.dimensions() > 2) {
        outer = x.args()[2];
    }
    Var n0 = x.args()[0];
    Var n1 = x.args()[1];

    // Cache of twiddle factors for this FFT.
    TwiddleFactorSet twiddle_cache;

    // transpose the input to the FFT.
    auto [xT, x_tiled] = tiled_transpose(x, N1, target, prefix);

    // Compute the DFT of dimension 1 (originally dimension 0).
    ComplexFunc dft1T = fft_dim1(xT,
                                 R0,
                                 sign,
                                 N1,  // extent of dim 0.
                                 1.0f,
                                 desc.parallel,
                                 prefix,
                                 target,
                                 &twiddle_cache);

    // transpose back.
    auto [dft1, dft1_tiled] = tiled_transpose(dft1T, N0, target, prefix);

    // Compute the DFT of dimension 1.
    ComplexFunc dft = fft_dim1(dft1,
                               R1,
                               sign,
                               N0,  // extent of dim 0
                               desc.gain,
                               desc.parallel,
                               prefix,
                               target,
                               &twiddle_cache);

    // Schedule the tiled transposes at each group.
    if (dft1_tiled.defined()) {
        dft1_tiled.compute_at(dft, group);
    } else {
        xT.compute_at(dft, outer).vectorize(n0).unroll(n1);
    }
    if (x_tiled.defined()) {
        x_tiled.compute_at(dft1T, group);
    }

    // Schedule the input, if requested.
    if (desc.schedule_input) {
        x.compute_at(dft1T, group);
    }

    dft1T.compute_at(dft, outer);

    dft.bound(dft.args()[0], 0, N0);
    dft.bound(dft.args()[1], 0, N1);

    return dft;
}

// The next two functions implement real to complex or complex to real FFTs. To
// understand the real to complex FFT, we need some background on the properties
// of FFTs of real data. If X = DFT[x] for a real sequence x of length N, then
// the following relationship holds:
//
//    X_n = (X_(N-n))*                         (1)
//
// This means that for N even, N/2 - 1 of the elements of X are redundant with
// another element of X. This property allows us to store only roughly half of
// a DFT of a real sequence, because the remaining half is fully determined by
// the first.
//
// Also note that for any DFT (not just real):
//
//   Z*_n = sum[ (z_n*) e^(-2*pi*i*n/N) ]
//        = sum[ z_n (e^(-2*pi*i*n/N))* ]*
//        = sum[ z_n e^(-2*pi*i*(N - n)/N) ]*
//   Z*_n = (Z_(N-n))*                         (2)
//
// Using these relationships, we can more efficiently compute two real FFTs by
// using one complex FFT. Let x and y be two real sequences of length N, and
// let z = x + j*y. We can compute the FFT of x and y using one complex FFT of
// z; let X + j*Y = Z = DFT[z] = DFT[x + j*y], then by the linearity of the DFT
// and equations (1) and (2):
//
//    x_n = (z_n + (z_n)*)/2
// -> X_n = (Z_n + Z*_n)/2
//        = (Z_n + (Z_(N-n))*)/2               (3)
//
// and
//
//    y_n = (z_n - (z_n)*)/(2*j)
// -> Y_n = (Z_n - Z*_n)/(2*j)
//        = (Z_n + (Z_(N-n))*)/(2*j)           (4)
//
// This gives 2 real DFTs for the cost of computing 1 complex FFT.
//
// As a side note, a consequence of (1) is that Z_0 and Z_(N/2) must be real.
// Note that Z_N = Z_0 by periodicity of the DFT:
//
//   Z_0 = (Z_N)* = (Z_0)*
//   Z_(N/2) = (Z_(N/2))*
//
// The only way z = z* can be true is if im(z) = 0, i.e. z is real.
//
// We want an efficient 2D FFT. Applying the above tools to a 2D DFT leads to
// some interesting results. First, note that the FFT of a 2D sequence x_(m, n)
// with extents MxN (rows x cols) is a 1D FFT of the rows, followed by a 1D FFT
// of the columns. Suppose x is real. One way to use the above tools is to
// combine pairs of columns into a set of half as many complex columns, and
// compute the FFT of these complex columns. This gives a result laid out like
// so:
//
//       N/2
//   +---------+
//   |    a    | m = 0
//   +---------+
//   |         |
//   |    b    |
//   |         |
//   +---------+
//   |    c    | m = M/2
//   +---------+
//   |         |
//   |    d    |
//   |         |
//   +---------+
//
// When we unzip the columns using (3) and (4) from above, we get data with the
// following layout.
//
//             N
//   +-------------------+
//   |         a'        | m = 0
//   +-------------------+
//   |                   |
//   |         b'        |
//   |                   |
//   +-------------------+
//   |         c'        | m = M/2
//   +-------------------+
//   |                   |
//   |         b'*       |
//   |                   |
//   +-------------------+
//
// Because b'* is redundant with b, we don't need to compute or store it,
// leaving M/2 + 1 rows.
//
// Now, we want to compute the DFT of the rows of this data. Because there are
// M/2 + 1 of them, and we are going to compute the FFTs using SIMD
// instructions, the extra 1 row can be quite expensive. If M is 16, then we
// have 9 rows. If the SIMD width is 4, we will compute 3 SIMD vectors worth of
// FFTs instead of 2, 33% more work than necessary. This is even worse if the
// SIMD width is 8 (AVX).
//
// We can fix this by recognizing that a' and c' are both real, and combining
// them together into one row in the same manner we did for the columns. This
// gives a block of data that looks like:
//
//             N
//   +-------------------+
//   |      a' + j c'    |
//   +-------------------+
//   |                   |  M/2
//   |         b'        |
//   |                   |
//   +-------------------+
//
// This way, we have M/2 rows to compute the FFT of, which is likely to be
// efficient to compute without wasted SIMD work. The DFTs of the rows a and c
// can be recovered using (3) and (4) again.

ComplexFunc fft2d_r2c(Func r,
                      const vector<int> &R0,
                      const vector<int> &R1,
                      const Target &target,
                      const Fft2dDesc &desc) {
    string prefix = desc.name.empty() ? "r2c_" : desc.name + "_";

    vector<Var> args(r.args());
    Var n0(args[0]), n1(args[1]);
    args.erase(args.begin());
    args.erase(args.begin());

    // Get the innermost variable outside the FFT.
    Var outer = Var::outermost();
    if (!args.empty()) {
        outer = args.front();
    }

    int N0 = product(R0);
    int N1 = product(R1);

    const int natural_vector_size = target.natural_vector_size(r.types()[0]);

    // If this FFT is small, the logic related to zipping and unzipping
    // the FFT may be expensive compared to just brute forcing with a complex
    // FFT.
    bool skip_zip = N0 < natural_vector_size * 2;
    // We also are bad at handling zipping when the zip size is a small non-integer
    // factor of the vector size.
    skip_zip = skip_zip || (N0 < natural_vector_size * 4 && (N0 % (natural_vector_size * 2) != 0));
    if (skip_zip) {
        ComplexFunc r_complex("r_complex");
        r_complex(A({n0, n1}, args)) = ComplexExpr(r(A({n0, n1}, args)), 0.0f);
        ComplexFunc dft = fft2d_c2c(r_complex, R0, R1, -1, target, desc);

        // fft2d_c2c produces a N0 x N1 buffer, but the caller of this probably only expects
        // an N0 x N1 / 2 + 1 buffer.
        ComplexFunc result(prefix + "r2c");
        result(A({n0, n1}, args)) = dft(A({n0, n1}, args));
        result.bound(n0, 0, N0);
        result.bound(n1, 0, (N1 + 1) / 2 + 1);
        result.vectorize(n0, std::min(N0, target.natural_vector_size(result.types()[0])));
        dft.compute_at(result, outer);
        return result;
    }

    // Cache of twiddle factors for this FFT.
    TwiddleFactorSet twiddle_cache;

    // The gain requested of the FFT.
    Expr gain = desc.gain;

    // Combine pairs of real columns x, y into complex columns z = x + j y. This
    // allows us to compute two real DFTs using one complex FFT. See the large
    // comment above this function for more background.
    //
    // An implementation detail is that we zip the columns in groups from the
    // input data to enable the loads to be dense vectors. x is taken from the
    // even indexed groups columns, y is taken from the odd indexed groups of
    // columns.
    //
    // Changing the group size can (insignificantly) numerically change the result
    // due to regrouping floating point operations. To avoid this, if the FFT
    // description specified a vector width, use it as the group size.
    ComplexFunc zipped(prefix + "zipped");
    int zip_width = desc.vector_width;
    if (zip_width <= 0) {
        zip_width = target.natural_vector_size(r.types()[0]);
    }
    // Ensure the zip width divides the zipped extent.
    zip_width = gcd(zip_width, N0 / 2);
    Expr zip_n0 = (n0 / zip_width) * zip_width * 2 + (n0 % zip_width);
    zipped(A({n0, n1}, args)) =
        ComplexExpr(r(A({zip_n0, n1}, args)),
                    r(A({zip_n0 + zip_width, n1}, args)));

    // DFT down the columns first.
    ComplexFunc dft1 = fft_dim1(zipped,
                                R1,
                                -1,      // sign
                                N0 / 2,  // extent of dim 0
                                1.0f,
                                false,  // We parallelize unzipped below instead.
                                prefix,
                                target,
                                &twiddle_cache);

    // Unzip the two groups of real DFTs we zipped together above. For more
    // information about the unzipping operation, see the large comment above this
    // function.
    ComplexFunc unzipped(prefix + "unzipped");
    {
        Expr unzip_n0 = (n0 / (zip_width * 2)) * zip_width + (n0 % zip_width);
        ComplexExpr Z = dft1(A({unzip_n0, n1}, args));
        ComplexExpr conjsymZ = conj(dft1(A({unzip_n0, (N1 - n1) % N1}, args)));

        ComplexExpr X = Z + conjsymZ;
        ComplexExpr Y = -j * (Z - conjsymZ);
        // Rather than divide the above expressions by 2 here, adjust the gain
        // instead.
        gain /= 2;

        unzipped(A({n0, n1}, args)) =
            select(n0 % (zip_width * 2) < zip_width, X, Y);
    }

    // Zip the DC and Nyquist DFT bin rows, which should be real.
    ComplexFunc zipped_0(prefix + "zipped_0");
    zipped_0(A({n0, n1}, args)) =
        select(n1 > 0, likely(unzipped(A({n0, n1}, args))),
               ComplexExpr(re(unzipped(A({n0, 0}, args))),
                           re(unzipped(A({n0, N1 / 2}, args)))));

    // The vectorization of the columns must not exceed this value.
    int zipped_extent0 = std::min((N1 + 1) / 2, zip_width);

    // transpose so we can FFT dimension 0 (by making it dimension 1).
    auto [unzippedT, unzippedT_tiled] = tiled_transpose(zipped_0, zipped_extent0, target, prefix);

    // DFT down the columns again (the rows of the original).
    ComplexFunc dftT = fft_dim1(unzippedT,
                                R0,
                                -1,  // sign
                                zipped_extent0,
                                gain,
                                desc.parallel,
                                prefix,
                                target,
                                &twiddle_cache);

    // transpose the result back to the original orientation, unless the caller
    // requested a transposed DFT.
    ComplexFunc dft = transpose(dftT);

    // We are going to add a row to the result (with update steps) by unzipping
    // the DC and Nyquist bin rows. To avoid unnecessarily computing some junk for
    // this row before we overwrite it, pad the pure definition with undef.
    dft = ComplexFunc(constant_exterior((Func)dft, Tuple(undef_z()), Expr(), Expr(), Expr(0), Expr(N1 / 2)));

    // Unzip the DFTs of the DC and Nyquist bin DFTs. Unzip the Nyquist DFT first,
    // because the DC bin DFT is updated in-place. For more information about
    // this, see the large comment above this function.
    RDom n0z1(1, N0 / 2);
    RDom n0z2(N0 / 2, N0 / 2);
    // Update 0: Unzip the DC bin of the DFT of the Nyquist bin row.
    dft(A({0, N1 / 2}, args)) = im(dft(A({0, 0}, args)));
    // Update 1: Unzip the rest of the DFT of the Nyquist bin row.
    dft(A({n0z1, N1 / 2}, args)) =
        0.5f * -j * (dft(A({n0z1, 0}, args)) - conj(dft(A({N0 - n0z1, 0}, args))));
    // Update 2: Compute the rest of the Nyquist bin row via conjugate symmetry.
    // Note that this redundantly computes n0 = N0/2, but that's faster and easier
    // than trying to deal with N0/2 - 1 bins.
    dft(A({n0z2, N1 / 2}, args)) = conj(dft(A({N0 - n0z2, N1 / 2}, args)));

    // Update 3: Unzip the DC bin of the DFT of the DC bin row.
    dft(A({0, 0}, args)) = re(dft(A({0, 0}, args)));
    // Update 4: Unzip the rest of the DFT of the DC bin row.
    dft(A({n0z1, 0}, args)) =
        0.5f * (dft(A({n0z1, 0}, args)) + conj(dft(A({N0 - n0z1, 0}, args))));
    // Update 5: Compute the rest of the DC bin row via conjugate symmetry.
    // Note that this redundantly computes n0 = N0/2, but that's faster and easier
    // than trying to deal with N0/2 - 1 bins.
    dft(A({n0z2, 0}, args)) = conj(dft(A({N0 - n0z2, 0}, args)));

    // Schedule.
    dftT.compute_at(dft, outer);

    // Schedule the tiled transposes.
    if (unzippedT_tiled.defined()) {
        unzippedT_tiled.compute_at(dftT, group);
    }

    // Schedule the input, if requested.
    if (desc.schedule_input) {
        r.compute_at(dft1, group);
    }

    // Vectorize the zip groups, and unroll by a factor of 2 to simplify the
    // even/odd selection.
    Var n0o("n0o"), n0i("n0i");
    unzipped.compute_at(dft, outer)
        .split(n0, n0o, n0i, zip_width * 2)
        .reorder(n0i, n1, n0o)
        .vectorize(n0i, zip_width)
        .unroll(n0i);
    dft1.compute_at(unzipped, n0o);
    if (desc.parallel) {
        // Note that this also parallelizes dft1, which is computed inside this loop
        // of unzipped.
        unzipped.parallel(n0o);
    }

    // Schedule the final DFT transpose and unzipping updates.
    int vector_size = gcd(target.natural_vector_size<float>(), N0);
    dft.vectorize(n0, vector_size)
        .unroll(n0, gcd(N0 / vector_size, 4));

    // The Nyquist bin at n0z = N0/2 looks like a race condition because it
    // simplifies to an expression similar to the DC bin. However, we include it
    // in the reduction because it makes the reduction have length N/2, which is
    // convenient for vectorization, and just ignore the resulting appearance of
    // a race condition.
    dft.update(1).allow_race_conditions().vectorize(n0z1, vector_size);
    dft.update(2).allow_race_conditions().vectorize(n0z2, vector_size);
    dft.update(4).allow_race_conditions().vectorize(n0z1, vector_size);
    dft.update(5).allow_race_conditions().vectorize(n0z2, vector_size);

    // Intentionally serial
    dft.update(0).unscheduled();
    dft.update(3).unscheduled();

    // Our result is undefined outside these bounds.
    dft.bound(n0, 0, N0);
    dft.bound(n1, 0, (N1 + 1) / 2 + 1);

    return dft;
}

Func fft2d_c2r(ComplexFunc c,
               vector<int> R0,
               vector<int> R1,
               const Target &target,
               const Fft2dDesc &desc) {
    string prefix = desc.name.empty() ? "c2r_" : desc.name + "_";

    vector<Var> args = c.args();
    Var n0(args[0]), n1(args[1]);
    args.erase(args.begin());
    args.erase(args.begin());

    // Get the innermost variable outside the FFT.
    Var outer = Var::outermost();
    if (!args.empty()) {
        outer = args.front();
    }

    int N0 = product(R0);
    int N1 = product(R1);

    // Add a boundary condition to prevent scheduling from causing the
    // algorithms below to reach out of the bounds we promise to define in
    // forward FFTs.
    c = ComplexFunc(repeat_edge((Func)c, {{Expr(0), Expr(N0)}, {Expr(0), Expr((N1 + 1) / 2 + 1)}}));

    // If this FFT is small, the logic related to zipping and unzipping
    // the FFT may be expensive compared to just brute forcing with a complex
    // FFT.
    const int natural_vector_size = target.natural_vector_size(c.types()[0]);

    bool skip_zip = N0 < natural_vector_size * 2;

    ComplexFunc dft;
    Func unzipped(prefix + "unzipped");
    if (skip_zip) {
        // Because fft2d_c2c expects the full complex domain, we need to reconstruct
        // it via conjugate symmetry.
        ComplexFunc c_extended(prefix + "c_extended");
        c_extended(A({n0, n1}, args)) =
            select(n1 <= (N1 + 1) / 2, c(A({n0, n1}, args)), conj(c(A({(N0 - n0) % N0, (N1 - n1) % N1}, args))));
        dft = fft2d_c2c(c_extended, R0, R1, 1, target, desc);
        unzipped(A({n0, n1}, args)) = re(dft(A({n0, n1}, args)));

        dft.compute_at(unzipped, outer);

        // We want to unroll by at least two zip_widths to simplify the zip group
        // logic.
        int vector_size = std::min(N0, natural_vector_size);
        unzipped.vectorize(n0, vector_size);
    } else {
        // Cache of twiddle factors for this FFT.
        TwiddleFactorSet twiddle_cache;

        int zipped_extent0 = (N1 + 1) / 2;

        // The DC and Nyquist bins must be real, so we zip those two DFTs together
        // into one complex DFT. Note that this select gets eliminated due to the
        // scheduling done by tiled_transpose below.
        ComplexFunc c_zipped(prefix + "c_zipped");
        {
            // Stuff the Nyquist bin DFT into the imaginary part of the DC bin DFT.
            ComplexExpr X = c(A({n0, 0}, args));
            ComplexExpr Y = c(A({n0, N1 / 2}, args));
            c_zipped(A({n0, n1}, args)) = select(n1 > 0, likely(c(A({n0, n1}, args))), X + j * Y);
        }

        // transpose the input.
        auto [cT, cT_tiled] =
            tiled_transpose(c_zipped, zipped_extent0, target, prefix);

        // Take the inverse DFT of the columns (rows in the final result).
        ComplexFunc dft0T = fft_dim1(cT,
                                     R0,
                                     1,  // sign
                                     zipped_extent0,
                                     1.0f,
                                     desc.parallel,
                                     prefix,
                                     target,
                                     &twiddle_cache);

        // The vector width of the zipping performed below.
        int zip_width = desc.vector_width;
        if (zip_width <= 0) {
            zip_width = gcd(target.natural_vector_size(dft0T.types()[0]), N1 / 2);
        }

        // transpose so we can take the DFT of the columns again.
        auto [dft0, dft0_tiled] = tiled_transpose(dft0T, zip_width, target, prefix, true);

        // Unzip the DC and Nyquist DFTs.
        ComplexFunc dft0_unzipped("dft0_unzipped");
        {
            dft0_unzipped(A({n0, n1}, args)) =
                select(n1 <= 0, re(dft0(A({n0, 0}, args))),
                       n1 >= N1 / 2, im(dft0(A({n0, 0}, args))),
                       likely(dft0(A({n0, min(n1, (N1 / 2) - 1)}, args))));
        }

        // Zip two real DFTs X and Y into one complex DFT Z = X + j Y. For more
        // information, see the large comment above fft2d_r2c.
        //
        // As an implementation detail, this zip operation is done in groups of
        // columns to enable dense vector loads. X is taken from the even indexed
        // groups of columns, Y is taken from the odd indexed groups of columns.
        //
        // Ensure the zip width divides the zipped extent.
        zip_width = gcd(zip_width, N0 / 2);

        ComplexFunc zipped(prefix + "zipped");
        {
            // Construct the whole DFT domain of X and Y via conjugate symmetry.
            Expr n0_X = (n0 / zip_width) * zip_width * 2 + (n0 % zip_width);
            Expr n1_sym = (N1 - n1) % N1;
            ComplexExpr X = select(n1 < N1 / 2,
                                   dft0_unzipped(A({n0_X, n1}, args)),
                                   conj(dft0_unzipped(A({n0_X, n1_sym}, args))));

            Expr n0_Y = n0_X + zip_width;
            ComplexExpr Y = select(n1 < N1 / 2,
                                   dft0_unzipped(A({n0_Y, n1}, args)),
                                   conj(dft0_unzipped(A({n0_Y, n1_sym}, args))));
            zipped(A({n0, n1}, args)) = X + j * Y;
        }

        // Take the inverse DFT of the columns again.
        dft = fft_dim1(zipped,
                       R1,
                       1,                            // sign
                       std::min(zip_width, N0 / 2),  // extent of dim 0
                       desc.gain,
                       desc.parallel,
                       prefix,
                       target,
                       &twiddle_cache);

        ComplexFunc dft_padded = ComplexFunc(repeat_edge((Func)dft, {{Expr(), Expr()}, {Expr(0), Expr(N1)}}));

        // Extract the real inverse DFTs.
        Expr unzip_n0 = (n0 / (zip_width * 2)) * zip_width + (n0 % zip_width);
        unzipped(A({n0, n1}, args)) =
            select(n0 % (zip_width * 2) < zip_width,
                   re(dft_padded(A({unzip_n0, n1}, args))),
                   im(dft_padded(A({unzip_n0, n1}, args))));

        // Schedule.

        // Schedule the transpose step.
        if (cT_tiled.defined()) {
            cT_tiled.compute_at(dft0T, group);
        }
        dft0_tiled.compute_at(dft, outer);

        // Schedule the input, if requested.
        if (desc.schedule_input) {
            // We should want to compute this at dft0T, group. However, due to the zip
            // operation, the bounds are bigger than we'd like (we need the last row for
            // the first group).
            c.compute_at(dft, outer);
        }

        dft0T.compute_at(dft, outer);

        // We want to unroll by at least two zip_widths to simplify the zip group
        // logic.
        unzipped
            .vectorize(n0, zip_width)
            .unroll(n0, gcd(N0 / zip_width, 4));
    }
    dft.compute_at(unzipped, outer);

    unzipped.bound(n0, 0, N0);
    unzipped.bound(n1, 0, N1);

    return unzipped;
}

namespace {

// Compute a factorization of N suitable for use in the FFT.
vector<int> radix_factor(int N) {
    // Some special cases to optimize.
    switch (N) {
    case 16:
        return {4, 4};
    case 32:
        return {8, 4};
    case 64:
        return {8, 8};
    case 128:
        return {8, 4, 4};
    case 256:
        return {8, 8, 4};
    }

    // Factor N into factors found in the 'radices' set.
    static const int radices[] = {8, 6, 4, 2};
    vector<int> R;
    for (int r : radices) {
        while (N % r == 0) {
            R.push_back(r);
            N /= r;
        }
    }

    // If there are still factors left over, just include them as a radix.
    if (N != 1 || R.empty()) {
        R.push_back(N);
    }

    return R;
}

}  // namespace

ComplexFunc fft2d_c2c(ComplexFunc x,
                      int N0, int N1,
                      int sign,
                      const Target &target,
                      const Fft2dDesc &desc) {
    return fft2d_c2c(x, radix_factor(N0), radix_factor(N1), sign, target, desc);
}

ComplexFunc fft2d_r2c(Func r,
                      int N0, int N1,
                      const Target &target,
                      const Fft2dDesc &desc) {
    return fft2d_r2c(r, radix_factor(N0), radix_factor(N1), target, desc);
}

Func fft2d_c2r(ComplexFunc c,
               int N0, int N1,
               const Target &target,
               const Fft2dDesc &desc) {
    return fft2d_c2r(c, radix_factor(N0), radix_factor(N1), target, desc);
}