1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
#include "Halide.h"
namespace {
using namespace Halide::ConciseCasts;
class Hist : public Halide::Generator<Hist> {
public:
Input<Buffer<uint8_t, 3>> input{"input"};
Output<Buffer<uint8_t, 3>> output{"output"};
void generate() {
Var x("x"), y("y"), c("c");
// Algorithm
Func Y("Y");
Y(x, y) = (0.299f * input(x, y, 0) +
0.587f * input(x, y, 1) +
0.114f * input(x, y, 2));
Func Cr("Cr");
Expr R = input(x, y, 0);
Cr(x, y) = (R - Y(x, y)) * 0.713f + 128;
Func Cb("Cb");
Expr B = input(x, y, 2);
Cb(x, y) = (B - Y(x, y)) * 0.564f + 128;
Func hist_rows("hist_rows");
hist_rows(x, y) = 0;
RDom rx(0, input.width());
Expr bin = cast<int>(clamp(Y(rx, y), 0, 255));
hist_rows(bin, y) += 1;
Func hist("hist");
hist(x) = 0;
RDom ry(0, input.height());
hist(x) += hist_rows(x, ry);
Func cdf("cdf");
cdf(x) = hist(0);
RDom b(1, 255);
cdf(b.x) = cdf(b.x - 1) + hist(b.x);
Func cdf_bin("cdf_bin");
cdf_bin(x, y) = u8(clamp(Y(x, y), 0, 255));
Func eq("equalize");
eq(x, y) = clamp(cdf(cdf_bin(x, y)) * (255.0f / (input.height() * input.width())), 0, 255);
Expr red = u8(clamp(eq(x, y) + (Cr(x, y) - 128) * 1.4f, 0, 255));
Expr green = u8(clamp(eq(x, y) - 0.343f * (Cb(x, y) - 128) - 0.711f * (Cr(x, y) - 128), 0, 255));
Expr blue = u8(clamp(eq(x, y) + 1.765f * (Cb(x, y) - 128), 0, 255));
output(x, y, c) = mux(c, {red, green, blue});
// Estimates (for autoscheduler; ignored otherwise)
{
input.dim(0).set_estimate(0, 1536);
input.dim(1).set_estimate(0, 2560);
input.dim(2).set_estimate(0, 3);
output.dim(0).set_estimate(0, 1536);
output.dim(1).set_estimate(0, 2560);
output.dim(2).set_estimate(0, 3);
}
// Schedule
if (!using_autoscheduler()) {
cdf.bound(x, 0, 256);
Var xi("xi"), yi("yi");
if (get_target().has_gpu_feature()) {
// 0.197ms on a 2060 RTX
Var yii;
RVar rxo, rxi;
if (get_target().has_feature(Target::CUDA)) {
// Each thread below will use atomic integer adds
// to shared to compute the histogram of a single
// row.
hist_rows
.in()
.compute_root()
.split(x, x, xi, 64)
.vectorize(xi, 2)
.unroll(x)
.gpu_lanes(xi)
.gpu_blocks(y);
hist_rows
.store_in(MemoryType::GPUShared)
.compute_at(hist_rows.in(), y)
.split(x, x, xi, 64)
.vectorize(xi, 2)
.unroll(x)
.gpu_lanes(xi)
.update()
.split(rx, rxo, rxi, 32)
.reorder(rxi, rxo, y)
.atomic()
.gpu_lanes(rxi);
Y.clone_in(hist_rows)
.compute_at(hist_rows, rxo)
.store_in(MemoryType::Register)
.gpu_lanes(x);
} else {
hist_rows.compute_root()
.gpu_tile(x, y, xi, yi, 32, 8);
const int slice_width = 256;
// Get more parallelism by not just taking
// histograms of rows, but histograms of small
// pieces of each row.
hist_rows.update()
.split(rx, rxo, rxi, slice_width);
Var z, zi;
Func intm = hist_rows.update().rfactor(rxo, z);
intm.in()
.compute_root()
.gpu_tile(y, z, yi, zi, 16, 1);
intm.compute_at(intm.in(), y)
.split(x, x, xi, 16)
.gpu_threads(xi)
.update()
.gpu_threads(y);
// hist_rows now just sums up the mini-histograms
// along the z dimension.
hist_rows.update().gpu_tile(x, y, xi, yi, 32, 8);
if (!get_target().has_feature(Target::Metal) &&
!get_target().has_feature(Target::D3D12Compute)) {
// bound_extent doesn't currently work inside
// metal & d3d12compute kernels because we can't compile the
// assertion. For metal & d3d12compute we just inline the
// luma computation.
Y.clone_in(intm)
.compute_at(intm.in(), y)
.split(x, x, xi, 16)
.bound_extent(x, 16)
.gpu_threads(xi);
}
}
hist.compute_root()
.gpu_tile(x, xi, 16)
.update()
.gpu_tile(x, xi, 16);
cdf.compute_root()
.gpu_tile(x, xi, 16)
.update()
.gpu_single_thread();
output.compute_root()
.reorder(c, x, y)
.bound(c, 0, 3)
.unroll(c)
.gpu_tile(x, y, xi, yi, 128, 4)
.vectorize(xi, 4);
Cb.compute_at(output, xi).vectorize(x);
Cr.compute_at(output, xi).vectorize(x);
eq.compute_at(output, xi).vectorize(x);
// Stage the LUT into shared memory
cdf.in()
.compute_at(output, x)
.split(x, x, xi, 64)
.vectorize(xi, 2)
.gpu_threads(xi, x);
} else {
// Runtime is noisy. 0.8ms - 1.1ms on an Intel
// i9-9960X using 16 threads
const int vec = natural_vector_size<float>();
// Make separate copies of Y to use while
// histogramming and while computing the output. It's
// better to redundantly luminance than reload it, but
// you don't want to inline it into the histogram
// computation because then it doesn't vectorize.
RVar rxo, rxi;
Y.clone_in(hist_rows)
.compute_at(hist_rows.in(), y)
.vectorize(x, vec);
hist_rows.update(0).unscheduled();
hist_rows.in()
.compute_root()
.vectorize(x, vec)
.parallel(y, 4);
hist_rows.compute_at(hist_rows.in(), y)
.vectorize(x, vec)
.update()
.reorder(y, rx)
.unroll(y);
hist.compute_root()
.vectorize(x, vec)
.update()
.reorder(x, ry)
.vectorize(x, vec)
.unroll(x, 4)
.parallel(x)
.reorder(ry, x);
cdf.compute_root().update().unscheduled();
output.reorder(c, x, y)
.bound(c, 0, 3)
.unroll(c)
.parallel(y, 8)
.vectorize(x, vec * 2);
}
}
}
};
} // namespace
HALIDE_REGISTER_GENERATOR(Hist, hist)
|