File: halide_benchmarks.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (178 lines) | stat: -rw-r--r-- 6,436 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// USAGE: halide_benchmarks <subroutine> <size>
//
// Benchmarks BLAS subroutines using Halide's implementation. Will
// construct random size x size matrices and/or size x 1 vectors
// to test the subroutine with.
//
// Accepted values for subroutine are:
//    L1: scal, copy, axpy, dot, nrm2
//    L2: gemv_notrans, gemv_trans
//    L3: gemm_notrans, gemm_trans_A, gemm_trans_B, gemm_trans_AB
//

#include "HalideBuffer.h"
#include "clock.h"
#include "halide_blas.h"
#include "macros.h"
#include <iomanip>
#include <iostream>
#include <random>
#include <string>

template<class T>
struct BenchmarksBase {
    typedef T Scalar;
    typedef Halide::Runtime::Buffer<T, 1> Vector;
    typedef Halide::Runtime::Buffer<T, 2> Matrix;

    std::random_device rand_dev;
    std::default_random_engine rand_eng{rand_dev()};

    std::string name;

    Scalar random_scalar() {
        std::uniform_real_distribution<T> uniform_dist(0.0, 1.0);
        return uniform_dist(rand_eng);
    }

    Vector random_vector(int N) {
        Vector buff(N);
        Scalar *x = (Scalar *)buff.data();
        for (int i = 0; i < N; ++i) {
            x[i] = random_scalar();
        }
        return buff;
    }

    Matrix random_matrix(int N) {
        Matrix buff(N, N);
        Scalar *A = (Scalar *)buff.data();
        for (int i = 0; i < N * N; ++i) {
            A[i] = random_scalar();
        }
        return buff;
    }

    BenchmarksBase(std::string n)
        : name(n) {
    }

    void run(std::string benchmark, int size) {
        if (benchmark == "copy") {
            bench_copy(size);
        } else if (benchmark == "scal") {
            bench_scal(size);
        } else if (benchmark == "axpy") {
            bench_axpy(size);
        } else if (benchmark == "dot") {
            bench_dot(size);
        } else if (benchmark == "asum") {
            bench_asum(size);
        } else if (benchmark == "gemv_notrans") {
            bench_gemv_notrans(size);
        } else if (benchmark == "gemv_trans") {
            bench_gemv_trans(size);
        } else if (benchmark == "ger") {
            bench_ger(size);
        } else if (benchmark == "gemm_notrans") {
            bench_gemm_notrans(size);
        } else if (benchmark == "gemm_transA") {
            bench_gemm_transA(size);
        } else if (benchmark == "gemm_transB") {
            bench_gemm_transB(size);
        } else if (benchmark == "gemm_transAB") {
            bench_gemm_transAB(size);
        }
    }

    virtual void bench_copy(int N) = 0;
    virtual void bench_scal(int N) = 0;
    virtual void bench_axpy(int N) = 0;
    virtual void bench_dot(int N) = 0;
    virtual void bench_asum(int N) = 0;
    virtual void bench_gemv_notrans(int N) = 0;
    virtual void bench_gemv_trans(int N) = 0;
    virtual void bench_ger(int N) = 0;
    virtual void bench_gemm_notrans(int N) = 0;
    virtual void bench_gemm_transA(int N) = 0;
    virtual void bench_gemm_transB(int N) = 0;
    virtual void bench_gemm_transAB(int N) = 0;
};

struct BenchmarksFloat : public BenchmarksBase<float> {
    BenchmarksFloat(std::string n)
        : BenchmarksBase(n),
          result(Halide::Runtime::Buffer<float, 0>::make_scalar()) {
    }

    Halide::Runtime::Buffer<float, 0> result;

    L1Benchmark(copy, "s", halide_scopy(x.raw_buffer(), y.raw_buffer()));
    L1Benchmark(scal, "s", halide_sscal(alpha, x.raw_buffer()));
    L1Benchmark(axpy, "s", halide_saxpy(alpha, x.raw_buffer(), y.raw_buffer()));
    L1Benchmark(dot, "s", halide_sdot(x.raw_buffer(), y.raw_buffer(), result.raw_buffer()));
    L1Benchmark(asum, "s", halide_sasum(x.raw_buffer(), result.raw_buffer()));

    L2Benchmark(gemv_notrans, "s", halide_sgemv(false, alpha, A.raw_buffer(), x.raw_buffer(), beta, y.raw_buffer()));

    L2Benchmark(gemv_trans, "s", halide_sgemv(true, alpha, A.raw_buffer(), x.raw_buffer(), beta, y.raw_buffer()));

    L2Benchmark(ger, "s", halide_sger(alpha, x.raw_buffer(), y.raw_buffer(), A.raw_buffer()));

    L3Benchmark(gemm_notrans, "s", halide_sgemm(false, false, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));

    L3Benchmark(gemm_transA, "s", halide_sgemm(true, false, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));

    L3Benchmark(gemm_transB, "s", halide_sgemm(false, true, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));

    L3Benchmark(gemm_transAB, "s", halide_sgemm(true, true, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));
};

struct BenchmarksDouble : public BenchmarksBase<double> {
    BenchmarksDouble(std::string n)
        : BenchmarksBase(n),
          result(Halide::Runtime::Buffer<double, 0>::make_scalar()) {
    }

    Halide::Runtime::Buffer<double, 0> result;

    L1Benchmark(copy, "d", halide_dcopy(x.raw_buffer(), y.raw_buffer()));
    L1Benchmark(scal, "d", halide_dscal(alpha, x.raw_buffer()));
    L1Benchmark(axpy, "d", halide_daxpy(alpha, x.raw_buffer(), y.raw_buffer()));
    L1Benchmark(dot, "d", halide_ddot(x.raw_buffer(), y.raw_buffer(), result.raw_buffer()));
    L1Benchmark(asum, "d", halide_dasum(x.raw_buffer(), result.raw_buffer()));

    L2Benchmark(gemv_notrans, "d", halide_dgemv(false, alpha, A.raw_buffer(), x.raw_buffer(), beta, y.raw_buffer()));

    L2Benchmark(gemv_trans, "d", halide_dgemv(true, alpha, A.raw_buffer(), x.raw_buffer(), beta, y.raw_buffer()));

    L2Benchmark(ger, "d", halide_dger(alpha, x.raw_buffer(), y.raw_buffer(), A.raw_buffer()));

    L3Benchmark(gemm_notrans, "d", halide_dgemm(false, false, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));

    L3Benchmark(gemm_transA, "d", halide_dgemm(true, false, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));

    L3Benchmark(gemm_transB, "d", halide_dgemm(false, true, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));

    L3Benchmark(gemm_transAB, "d", halide_dgemm(true, true, alpha, A.raw_buffer(), B.raw_buffer(), beta, C.raw_buffer()));
};

int main(int argc, char *argv[]) {
    if (argc != 3) {
        std::cout << "USAGE: halide_benchmarks <subroutine> <size>\n";
        return 0;
    }

    std::string subroutine = argv[1];
    char type = subroutine[0];
    int size = std::stoi(argv[2]);

    subroutine = subroutine.substr(1);
    if (type == 's') {
        BenchmarksFloat("Halide").run(subroutine, size);
    } else if (type == 'd') {
        BenchmarksDouble("Halide").run(subroutine, size);
    }

    return 0;
}