File: model_test.py

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (117 lines) | stat: -rw-r--r-- 4,567 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import unittest
from model import Model
from onnx import helper
from onnx import TensorProto
import numpy as np


class ModelTest(unittest.TestCase):
    def setUp(self):
        pass

    def test_empty_model(self):
        model = Model()
        with self.assertRaises(Exception):
            model.GenerateSchedule()
        with self.assertRaises(Exception):
            model.PrintLoopNest()
        with self.assertRaises(Exception):
            model.PrintLoweredStatement()

    def test_small_model(self):
        # Create one input
        X = helper.make_tensor_value_info("IN", TensorProto.FLOAT, [2, 3])
        # Create one output
        Y = helper.make_tensor_value_info("OUT", TensorProto.FLOAT, [2, 3])
        # Create a node
        node_def = helper.make_node("Abs", ["IN"], ["OUT"])

        # Create the model
        graph_def = helper.make_graph([node_def], "test-model", [X], [Y])
        onnx_model = helper.make_model(graph_def, producer_name="onnx-example")

        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        schedule = model.OptimizeSchedule()
        schedule = schedule.replace("\n", " ")
        expected_schedule = r".*Func OUT = pipeline.get_func\(1\);.+"
        self.assertRegex(schedule, expected_schedule)

        input = (np.random.rand(2, 3) - 0.5).astype("float32")
        outputs = model.run([input])
        self.assertEqual(1, len(outputs))
        output = outputs[0]
        expected = np.abs(input)
        np.testing.assert_allclose(expected, output)

    def test_scalars(self):
        # Create 2 inputs
        X = helper.make_tensor_value_info("A", TensorProto.INT32, [])
        Y = helper.make_tensor_value_info("B", TensorProto.INT32, [])
        # Create one output
        Z = helper.make_tensor_value_info("C", TensorProto.INT32, [])
        # Create a node
        node_def = helper.make_node("Add", ["A", "B"], ["C"])

        # Create the model
        graph_def = helper.make_graph([node_def], "scalar-model", [X, Y], [Z])
        onnx_model = helper.make_model(graph_def, producer_name="onnx-example")

        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        schedule = model.OptimizeSchedule()
        schedule = schedule.replace("\n", " ")
        expected_schedule = r".*Func C = pipeline.get_func\(2\);.+"
        self.assertRegex(schedule, expected_schedule)

        input1 = np.random.randint(-10, 10, size=()).astype("int32")
        input2 = np.random.randint(-10, 10, size=()).astype("int32")
        outputs = model.run([input1, input2])
        self.assertEqual(1, len(outputs))
        output = outputs[0]
        expected = input1 + input2
        np.testing.assert_allclose(expected, output)

    def test_model_with_initializer(self):
        X = helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 1])
        Z2 = helper.make_tensor_value_info("Z2", TensorProto.FLOAT, [2, 3, 6])

        expand_node_def = helper.make_node("Expand", ["X", "Y"], ["Z1"])
        cast_node_def = helper.make_node("Scale", ["Z1"], ["Z2"])

        graph_def = helper.make_graph(
            [expand_node_def, cast_node_def],
            "test-node",
            [X],
            [Z2],
            initializer=[helper.make_tensor("Y", TensorProto.INT64, (3,), (2, 1, 6))],
        )
        onnx_model = helper.make_model(graph_def, producer_name="onnx-example")
        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        input_data = np.random.rand(3, 1).astype(np.float32)
        outputs = model.run([input_data])
        expected = input_data * np.ones([2, 1, 6], dtype=np.float32)
        np.testing.assert_allclose(expected, outputs[0])

    def test_tensors_rank_zero(self):
        X = helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])
        S1 = helper.make_tensor_value_info("S1", TensorProto.INT64, [])
        S2 = helper.make_tensor_value_info("S2", TensorProto.FLOAT, [])

        size_node = helper.make_node("Size", ["X"], ["S1"])

        graph_def = helper.make_graph(
            [size_node],
            "rank_zero_test",
            [X],
            [S1, S2],
            initializer=[helper.make_tensor("S2", TensorProto.FLOAT, (), (3.14,))],
        )
        onnx_model = helper.make_model(graph_def, producer_name="onnx-example")
        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        input_data = np.random.rand(3, 2).astype(np.float32)
        outputs = model.run([input_data])
        self.assertEqual(6, outputs[0])
        self.assertAlmostEqual(3.14, outputs[1])