File: resize_generator.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (240 lines) | stat: -rw-r--r-- 8,499 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#include "Halide.h"

using namespace Halide;

enum InterpolationType {
    Box,
    Linear,
    Cubic,
    Lanczos
};

Expr kernel_box(Expr x) {
    Expr xx = abs(x);
    return select(xx <= 0.5f, 1.0f, 0.0f);
}

Expr kernel_linear(Expr x) {
    Expr xx = abs(x);
    return select(xx < 1.0f, 1.0f - xx, 0.0f);
}

Expr kernel_cubic(Expr x) {
    Expr xx = abs(x);
    Expr xx2 = xx * xx;
    Expr xx3 = xx2 * xx;
    float a = -0.5f;

    return select(xx < 1.0f, (a + 2.0f) * xx3 - (a + 3.0f) * xx2 + 1,
                  select(xx < 2.0f, a * xx3 - 5 * a * xx2 + 8 * a * xx - 4.0f * a,
                         0.0f));
}

Expr sinc(Expr x) {
    x *= 3.14159265359f;
    return sin(x) / x;
}

Expr kernel_lanczos(Expr x) {
    Expr value = sinc(x) * sinc(x / 3);
    value = select(x == 0.0f, 1.0f, value);        // Take care of singularity at zero
    value = select(x > 3 || x < -3, 0.0f, value);  // Clamp to zero out of bounds
    return value;
}

struct KernelInfo {
    const char *name;
    int taps;
    Expr (*kernel)(Expr);
};

static KernelInfo kernel_info[] = {
    {"box", 1, kernel_box},
    {"linear", 2, kernel_linear},
    {"cubic", 4, kernel_cubic},
    {"lanczos", 6, kernel_lanczos}};

class Resize : public Halide::Generator<Resize> {
public:
    GeneratorParam<InterpolationType> interpolation_type{"interpolation_type", Cubic, {{"box", Box}, {"linear", Linear}, {"cubic", Cubic}, {"lanczos", Lanczos}}};

    // If we statically know whether we're upsampling or downsampling,
    // we can generate different pipelines (we want to reorder the
    // resample in x and in y).
    GeneratorParam<bool> upsample{"upsample", false};

    Input<Buffer<void, 3>> input{"input"};
    Input<float> scale_factor{"scale_factor"};
    Output<Buffer<void, 3>> output{"output"};

    // Common Vars
    Var x{"x"}, y{"y"}, c{"c"}, k{"k"};

    // Intermediate Funcs
    Func as_float{"as_float"},
        resized_x{"resized_x"},
        resized_y{"resized_y"},
        unnormalized_kernel_x{"unnormalized_kernel_x"},
        unnormalized_kernel_y{"unnormalized_kernel_y"},
        kernel_x{"kernel_x"},
        kernel_y{"kernel_y"},
        kernel_sum_x{"kernel_sum_x"},
        kernel_sum_y{"kernel_sum_y"};

    void generate() {

        // Handle different types by just casting to float
        as_float(x, y, c) = cast<float>(input(x, y, c));

        // For downscaling, widen the interpolation kernel to perform lowpass
        // filtering.

        // Invert the scale factor in a single place and do it
        // strictly, to avoid getting different ratios showing up in
        // different places.
        Expr inverse_scale_factor = strict_float(1.0f / scale_factor);

        Expr kernel_scaling = upsample ? Expr(1.0f) : scale_factor;
        Expr inverse_kernel_scaling = upsample ? Expr(1.0f) : inverse_scale_factor;

        Expr kernel_radius = 0.5f * kernel_info[interpolation_type].taps * inverse_kernel_scaling;

        Expr kernel_taps = cast<int>(ceil(kernel_info[interpolation_type].taps * inverse_kernel_scaling));

        // source[xy] are the (non-integer) coordinates inside the source image
        Expr sourcex = (x + 0.5f) * inverse_scale_factor - 0.5f;
        Expr sourcey = (y + 0.5f) * inverse_scale_factor - 0.5f;

        // Initialize interpolation kernels. Since we allow an
        // arbitrary scaling factor, the filter coefficients are
        // different for each x and y coordinate. Use strict-float to
        // ensure fast-math doesn't mess up our bounds inference.
        Expr beginx = cast<int>(strict_float(ceil(sourcex - kernel_radius)));
        Expr beginy = cast<int>(strict_float(ceil(sourcey - kernel_radius)));
        beginx = clamp(beginx, input.dim(0).min(), input.dim(0).max() + 1 - kernel_taps);
        beginy = clamp(beginy, input.dim(1).min(), input.dim(1).max() + 1 - kernel_taps);

        RDom r(0, kernel_taps);
        const KernelInfo &info = kernel_info[interpolation_type];

        unnormalized_kernel_x(x, k) = info.kernel((k + beginx - sourcex) * kernel_scaling);
        unnormalized_kernel_y(y, k) = info.kernel((k + beginy - sourcey) * kernel_scaling);

        kernel_sum_x(x) = sum(unnormalized_kernel_x(x, r), "kernel_sum_x");
        kernel_sum_y(y) = sum(unnormalized_kernel_y(y, r), "kernel_sum_y");

        kernel_x(x, k) = unnormalized_kernel_x(x, k) / kernel_sum_x(x);
        kernel_y(y, k) = unnormalized_kernel_y(y, k) / kernel_sum_y(y);

        // Perform separable resizing. The resize in x vectorizes
        // poorly compared to the resize in y, so do it first if we're
        // upsampling, and do it second if we're downsampling.
        Func resized;
        if (upsample) {
            resized_x(x, y, c) = sum(kernel_x(x, r) * as_float(r + beginx, y, c), "resized_x");
            resized_y(x, y, c) = sum(kernel_y(y, r) * resized_x(x, r + beginy, c), "resized_y");
            resized = resized_y;
        } else {
            resized_y(x, y, c) = sum(kernel_y(y, r) * as_float(x, r + beginy, c), "resized_y");
            resized_x(x, y, c) = sum(kernel_x(x, r) * resized_y(r + beginx, y, c), "resized_x");
            resized = resized_x;
        }

        if (input.type().is_float()) {
            output(x, y, c) = clamp(resized(x, y, c), 0.0f, 1.0f);
        } else {
            output(x, y, c) = saturating_cast(input.type(), resized(x, y, c));
        }
    }

    void schedule() {
        const int vec = natural_vector_size<float>();

        Var xi("xi"), yi("yi");
        unnormalized_kernel_x
            .compute_at(kernel_x, x)
            .store_in(MemoryType::Stack)
            .vectorize(x);
        kernel_sum_x
            .compute_at(kernel_x, x)
            .vectorize(x);
        kernel_x
            .compute_root()
            .reorder(k, x)
            .vectorize(x, vec);

        unnormalized_kernel_y
            .compute_at(kernel_y, y)
            .vectorize(y, vec);
        kernel_sum_y
            .compute_at(kernel_y, y)
            .vectorize(y);
        kernel_y
            .compute_at(output, y)
            .reorder(k, y)
            .vectorize(y, vec);

        if (upsample) {
            output
                .tile(x, y, xi, yi, 16, 64)
                .parallel(y)
                .vectorize(xi);
            resized_x
                .compute_at(output, x)
                .hoist_storage(output, y)
                .vectorize(x);
            resized_y
                .compute_at(output, xi)
                .unroll(c);
        } else {
            output
                .tile(x, y, xi, yi, 32, 8)
                .parallel(y)
                .vectorize(xi);
            resized_y
                .compute_at(output, y)
                .vectorize(x, vec);
            resized_x
                .compute_at(output, xi)
                .unroll(c);
        }

        // Allow the input and output to have arbitrary memory layout,
        // and add some specializations for a few common cases. If
        // your case is not covered (e.g. planar input, packed rgb
        // output), you could add a new specialization here.
        output.dim(0).set_stride(Expr());
        input.dim(0).set_stride(Expr());

        Expr planar = (output.dim(0).stride() == 1 &&
                       input.dim(0).stride() == 1);
        Expr packed_rgb = (output.dim(0).stride() == 3 &&
                           output.dim(2).stride() == 1 &&
                           output.dim(2).min() == 0 &&
                           output.dim(2).extent() == 3 &&
                           input.dim(0).stride() == 3 &&
                           input.dim(2).stride() == 1 &&
                           input.dim(2).min() == 0 &&
                           input.dim(2).extent() == 3);
        Expr packed_rgba = (output.dim(0).stride() == 4 &&
                            output.dim(2).stride() == 1 &&
                            output.dim(2).min() == 0 &&
                            output.dim(2).extent() == 4 &&
                            input.dim(0).stride() == 4 &&
                            input.dim(2).stride() == 1 &&
                            input.dim(2).min() == 0 &&
                            input.dim(2).extent() == 4);

        output.specialize(planar);

        output.specialize(packed_rgb)
            .reorder(c, xi, yi, x, y)
            .unroll(c);

        output.specialize(packed_rgba)
            .reorder(c, xi, yi, x, y)
            .unroll(c);
    }
};

HALIDE_REGISTER_GENERATOR(Resize, resize);