File: Resnet50Generator.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (383 lines) | stat: -rw-r--r-- 15,756 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#include "Halide.h"
#include <tuple>
#include <unordered_map>

namespace {

struct Tensor {
    Halide::Func f;
    std::vector<int> shape;
    std::string name;
};

struct WeightShape {
    int c;  // output channels
    int w;
    int h;
    int pad;
    int stride;
};

// returns index of found value in array or -1 if not in array
int find_index(int value, std::vector<int> vec) {
    std::vector<int>::iterator it = std::find(vec.begin(), vec.end(), value);
    if (it == vec.end())
        return -1;
    return std::distance(vec.begin(), it);
}

class Resnet50Generator : public Halide::Generator<Resnet50Generator> {
public:
    Input<Buffer<float, 3>> input{"input"};
    /** parameter values for scaling layers **/
    Input<Buffer<float, 1>> conv1_gamma{"conv1_gamma"};
    Input<Buffer<float, 1>[4]> br1_gamma{"br1_gamma"};
    Input<Buffer<float, 1>[16]> br2a_gamma{"br2a_gamma"};
    Input<Buffer<float, 1>[16]> br2b_gamma{"br2b_gamma"};
    Input<Buffer<float, 1>[16]> br2c_gamma{"br2c_gamma"};

    Input<Buffer<float, 1>> conv1_beta{"conv1_beta"};
    Input<Buffer<float, 1>[4]> br1_beta{"br1_beta"};
    Input<Buffer<float, 1>[16]> br2a_beta{"br2a_beta"};
    Input<Buffer<float, 1>[16]> br2b_beta{"br2b_beta"};
    Input<Buffer<float, 1>[16]> br2c_beta{"br2c_beta"};

    Input<Buffer<float, 1>> conv1_mu{"conv1_mu"};
    Input<Buffer<float, 1>[4]> br1_mu{"br1_mu"};
    Input<Buffer<float, 1>[16]> br2a_mu{"br2a_mu"};
    Input<Buffer<float, 1>[16]> br2b_mu{"br2b_mu"};
    Input<Buffer<float, 1>[16]> br2c_mu{"br2c_mu"};

    Input<Buffer<float, 1>> conv1_sig{"conv1_sig"};
    Input<Buffer<float, 1>[4]> br1_sig{"br1_sig"};
    Input<Buffer<float, 1>[16]> br2a_sig{"br2a_sig"};
    Input<Buffer<float, 1>[16]> br2b_sig{"br2b_sig"};
    Input<Buffer<float, 1>[16]> br2c_sig{"br2c_sig"};

    /** weights and biases for convolutions **/
    Input<Buffer<float, 4>> conv1_weights{"conv1_weights"};
    Input<Buffer<float, 4>[4]> br1_conv_weights{"br1_conv_weights"};
    Input<Buffer<float, 4>[16]> br2a_conv_weights{"br2a_conv_weights"};
    Input<Buffer<float, 4>[16]> br2b_conv_weights{"br2b_conv_weights"};
    Input<Buffer<float, 4>[16]> br2c_conv_weights{"br2c_conv_weights"};

    Input<Buffer<float, 2>> fc1000_weights{"fc1000_weights"};
    Input<Buffer<float, 1>> fc1000_bias{"fc1000_bias"};
    Output<Buffer<float, 1>> final_output{"final_output"};

    /** list out shapes of each layers weights **/
    // weight shapes: out channels, kernel_w, kernel_h, pad, stride. In channels infered by input tensor shape
    const WeightShape conv1_ws = {64, 7, 7, 3, 2};
    const WeightShape pool1_ws = {64, 3, 3, 1, 2};
    const WeightShape pool5_ws = {2048, 7, 7, 0, 1};
    const WeightShape fc1000_ws = {1000, 1, 1, 0, 1};  // 1x1 conv with 2048 input channels and 1000 output channels

    // res2a, res2b, res2c all have shame shapes
    const WeightShape res2x_br2a_ws = {64, 1, 1, 0, 1};
    const WeightShape res2a_br2b_ws = {64, 3, 3, 1, 1};
    const WeightShape res2x_br2b_ws = {64, 3, 3, 1, 1};
    const WeightShape res2x_br2c_ws = {256, 1, 1, 0, 1};
    const WeightShape res2a_br1_ws = {256, 1, 1, 0, 1};

    // res3x is same for most layers
    const WeightShape res3x_br2a_ws = {128, 1, 1, 0, 1};
    const WeightShape res3a_br2b_ws = {128, 3, 3, 1, 2};
    const WeightShape res3x_br2b_ws = {128, 3, 3, 1, 1};
    const WeightShape res3x_br2c_ws = {512, 1, 1, 0, 1};
    const WeightShape res3a_br1_ws = {512, 1, 1, 0, 2};

    const WeightShape res4x_br2a_ws = {256, 1, 1, 0, 1};
    const WeightShape res4a_br2b_ws = {256, 3, 3, 1, 2};
    const WeightShape res4x_br2b_ws = {256, 3, 3, 1, 1};
    const WeightShape res4x_br2c_ws = {1024, 1, 1, 0, 1};
    const WeightShape res4a_br1_ws = {1024, 1, 1, 0, 2};

    const WeightShape res5x_br2a_ws = {512, 1, 1, 0, 1};
    const WeightShape res5a_br2b_ws = {512, 3, 3, 1, 2};
    const WeightShape res5x_br2b_ws = {512, 3, 3, 1, 1};
    const WeightShape res5x_br2c_ws = {2048, 1, 1, 0, 1};
    const WeightShape res5a_br1_ws = {2048, 1, 1, 0, 2};

    const WeightShape br1_ws[4] = {res2a_br1_ws, res3a_br1_ws, res4a_br1_ws, res5a_br1_ws};
    const WeightShape br2a_ws[16] = {res2x_br2a_ws, res2x_br2a_ws, res2x_br2a_ws,
                                     res3x_br2a_ws, res3x_br2a_ws, res3x_br2a_ws, res3x_br2a_ws,
                                     res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws,
                                     res5x_br2a_ws, res5x_br2a_ws, res5x_br2a_ws};
    const WeightShape br2b_ws[16] = {res2a_br2b_ws, res2x_br2b_ws, res2x_br2b_ws,
                                     res3a_br2b_ws, res3x_br2b_ws, res3x_br2b_ws, res3x_br2b_ws,
                                     res4a_br2b_ws, res4x_br2b_ws, res4x_br2b_ws, res4x_br2b_ws, res4x_br2b_ws, res4x_br2b_ws,
                                     res5a_br2b_ws, res5x_br2b_ws, res5x_br2b_ws};
    const WeightShape br2c_ws[16] = {res2x_br2c_ws, res2x_br2c_ws, res2x_br2c_ws,
                                     res3x_br2c_ws, res3x_br2c_ws, res3x_br2c_ws, res3x_br2c_ws,
                                     res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws,
                                     res5x_br2c_ws, res5x_br2c_ws, res5x_br2c_ws};

    Var c, i, j;

    void generate() {

        // Algorithm

        /** Declare arrays of other functions and build the requested block **/
        Tensor br1_conv[4];
        Tensor br1_norm[4];
        Tensor br1_scale[4];

        Tensor br2a_conv[16];
        Tensor br2a_norm[16];
        Tensor br2a_scaled[16];
        Tensor br2a_relu[16];

        Tensor br2b_conv[16];
        Tensor br2b_norm[16];
        Tensor br2b_scaled[16];
        Tensor br2b_relu[16];

        Tensor br2c_conv[16];
        Tensor br2c_norm[16];
        Tensor br2c_scaled[16];

        Tensor resunit_sum[16];
        Tensor resunit_relu[16];

        Tensor pool5;
        Tensor fc1000;
        Tensor softmax;

        // these tensors are different depending on the block and must be conditionally assigned.
        Tensor input_t;
        std::vector<int> input_shape;
        Tensor br2a_input;
        Tensor resunit_sum_input;

        // used only for block_id == 0
        Tensor conv1, norm1, scaled1, relu1, pool1;

        std::vector<int> branch1_indices{0, 3, 7, 13};

        /** if block_id is 0 build the (stem) conv1 section **/
        for (int block_id = 0; block_id < 16; ++block_id) {
            if (block_id == 0) {
                input_shape = {3, 224, 224};
                input_t.f = input;
                input_t.shape = input_shape;

                conv1 = conv2D(input_t, conv1_ws, conv1_weights, "conv1");
                norm1 = norm_layer(conv1, conv1_mu, conv1_sig, "norm1");
                scaled1 = scale_layer(norm1, conv1_gamma, conv1_beta, "scale1");
                relu1 = relu_layer(scaled1, "relu1");
                pool1 = max_pool_layer(relu1, pool1_ws, "pool1");

                br2a_input = pool1;
            } else {
                br2a_input = resunit_relu[block_id - 1];
            }

            // build branch1 if this section has branch1
            int br1_i = find_index(block_id, branch1_indices);
            if (br1_i >= 0) {
                br1_conv[br1_i] = conv2D(br2a_input, br1_ws[br1_i], br1_conv_weights[br1_i], "br1_conv");
                br1_norm[br1_i] = norm_layer(br1_conv[br1_i], br1_mu[br1_i], br1_sig[br1_i], "br1_norm");
                br1_scale[br1_i] = scale_layer(br1_norm[br1_i], br1_gamma[br1_i], br1_beta[br1_i], "br1_scale");
                resunit_sum_input = br1_scale[br1_i];
            } else {
                resunit_sum_input = resunit_relu[block_id - 1];
            }

            // branch2a
            auto weights = br2a_conv_weights[block_id];

            br2a_conv[block_id] = conv2D(br2a_input, br2a_ws[block_id], weights, "block" + std::to_string(block_id) + "_2a_conv");
            br2a_norm[block_id] = norm_layer(br2a_conv[block_id], br2a_mu[block_id], br2a_sig[block_id], "block" + std::to_string(block_id) + "_2a_norm");
            br2a_scaled[block_id] = scale_layer(br2a_norm[block_id], br2a_gamma[block_id], br2a_beta[block_id], "block" + std::to_string(block_id) + "_2a_scale");
            br2a_relu[block_id] = relu_layer(br2a_scaled[block_id], "2a_relu");

            // branch 2b
            weights = br2b_conv_weights[block_id];
            br2b_conv[block_id] = conv2D(br2a_relu[block_id], br2b_ws[block_id], weights, "block" + std::to_string(block_id) + "_2b_conv");
            br2b_norm[block_id] = norm_layer(br2b_conv[block_id], br2b_mu[block_id], br2b_sig[block_id], "block" + std::to_string(block_id) + "_2b_norm");
            br2b_scaled[block_id] = scale_layer(br2b_norm[block_id], br2b_gamma[block_id], br2b_beta[block_id], "block" + std::to_string(block_id) + "_2b_scale");
            br2b_relu[block_id] = relu_layer(br2b_scaled[block_id], "2b_relu");

            // branch 2c
            weights = br2c_conv_weights[block_id];
            br2c_conv[block_id] = conv2D(br2b_relu[block_id], br2c_ws[block_id], weights, "block" + std::to_string(block_id) + "_2c_conv");
            br2c_norm[block_id] = norm_layer(br2c_conv[block_id], br2c_mu[block_id], br2c_sig[block_id], "block" + std::to_string(block_id) + "_2c_norm");
            br2c_scaled[block_id] = scale_layer(br2c_norm[block_id], br2c_gamma[block_id], br2c_beta[block_id], "block" + std::to_string(block_id) + "_2c_scale");

            // create residual unit
            resunit_sum[block_id] = sum_layer(resunit_sum_input, br2c_scaled[block_id], "block" + std::to_string(block_id) + "_res_sum");
            resunit_relu[block_id] = relu_layer(resunit_sum[block_id], "block" + std::to_string(block_id) + "_res_relu");

            // create final 3 layers
            if (block_id == 15) {
                pool5 = avg_pool_layer(resunit_relu[block_id], pool5_ws, "pool5");
                fc1000 = fc_layer(pool5, fc1000_ws, fc1000_weights, fc1000_bias, "fc");
                final_output = softmax_layer(fc1000, 1000, "softmax");
            }
        }

        // TODO: Actually schedule this.
        conv1.f.compute_root();
        scaled1.f.compute_root();
        relu1.f.compute_root();
        pool1.f.compute_root();
        for (int i = 0; i < 16; i++) {
            br2a_relu[i].f.compute_root().vectorize(c, 8).parallel(j);
            br2b_relu[i].f.compute_root().vectorize(c, 8).parallel(j);
            resunit_relu[i].f.compute_root().vectorize(c, 8).parallel(j);
        }
        pool5.f.compute_root();
        fc1000.f.compute_root();
        softmax.f.compute_root();
    }

private:
    Func pad(Func f, Expr width, Expr height) {
        Halide::Region bounds(f.dimensions());
        bounds[1].min = 0;
        bounds[1].extent = width;
        bounds[2].min = 0;
        bounds[2].extent = height;
        return Halide::BoundaryConditions::constant_exterior(f, 0.0f, bounds);
    }

    std::vector<int> compute_shape(const Tensor &in, const WeightShape &params) {
        int w = (1.0 / params.stride) * (params.pad * 2 + in.shape[1] - params.w + 1 + params.stride - 1);
        int h = (1.0 / params.stride) * (params.pad * 2 + in.shape[2] - params.h + 1 + params.stride - 1);
        int c = params.c;

        return {c, w, h};
    }

    Tensor conv2D(const Tensor &input, const WeightShape &weight_shape, const Func &weights, const std::string &name) {
        int p = weight_shape.pad;
        Func padded;
        // pad input
        if (p) {
            padded = pad(input.f, input.shape[1], input.shape[2]);
        } else {
            padded = input.f;
        }
        RDom r(0, input.shape[0], 0, weight_shape.w, 0, weight_shape.h);
        Func conv;
        conv(c, i, j) += weights(c, r.y, r.z, r.x) * padded(r.x, weight_shape.stride * i + r.y - p, weight_shape.stride * j + r.z - p);

        Tensor output;
        output.f = conv;
        output.name = name;
        output.shape = compute_shape(input, weight_shape);
        return output;
    }

    // assumes input is 3D (c, w, h) where w and h = 1
    Tensor fc_layer(const Tensor &input, const WeightShape &weight_shape, const Func &weights, const Func &bias, const std::string &name) {
        RDom r(0, input.shape[0]);
        Func fc;
        fc(c) = bias(c);
        fc(c) += weights(c, r.x) * input.f(r.x, 0, 0);

        Tensor output;
        output.f = fc;
        output.name = name;
        output.shape = compute_shape(input, weight_shape);

        return output;
    }

    Tensor relu_layer(const Tensor &input, const std::string &name) {
        Func relu;
        relu(c, i, j) = max(0.0f, input.f(c, i, j));
        Tensor output;
        output.f = relu;
        output.shape = input.shape;
        output.name = name;
        return output;
    }

    Tensor max_pool_layer(const Tensor &input, const WeightShape &weight_shape, const std::string &name) {
        int p = weight_shape.pad;
        Func padded;
        if (p) {
            padded = pad(input.f, input.shape[1], input.shape[2]);
        } else {
            padded = input.f;
        }
        RDom r(0, weight_shape.w, 0, weight_shape.h);
        Func pool;
        pool(c, i, j) = maximum(padded(c, weight_shape.stride * i + r.x - p, weight_shape.stride * j + r.y - p));
        Tensor output;
        output.f = pool;
        output.name = name;
        output.shape = compute_shape(input, weight_shape);

        return output;
    }

    Tensor avg_pool_layer(const Tensor &input, const WeightShape &weight_shape, const std::string &name) {
        int p = weight_shape.pad;
        Func padded;
        if (p) {
            padded = pad(input.f, input.shape[1], input.shape[2]);
        } else {
            padded = input.f;
        }
        RDom r(0, weight_shape.w, 0, weight_shape.h);
        float scale = weight_shape.w * weight_shape.h;
        Func pool;
        float n = 1.0f / scale;
        pool(c, i, j) += n * padded(c, weight_shape.stride * i + r.x - p, weight_shape.stride * j + r.y - p);

        Tensor output;
        output.f = pool;
        output.name = name;
        output.shape = compute_shape(input, weight_shape);

        return output;
    }

    Tensor norm_layer(const Tensor &input, const Func &mu, const Func &sigma, const std::string &name) {
        Func normed;
        Expr e = input.f(c, i, j);
        normed(c, i, j) = (input.f(c, i, j) - mu(c)) / (sqrt(sigma(c) + 1e-5f));
        Tensor output;
        output.f = normed;
        output.shape = input.shape;
        output.name = name;
        return output;
    }

    Tensor scale_layer(const Tensor &input, const Func &gamma, const Func &beta, const std::string &name) {
        Func scaled;
        scaled(c, i, j) = input.f(c, i, j) * gamma(c) + beta(c);
        Tensor output;
        output.f = scaled;
        output.shape = input.shape;
        output.name = name;
        return output;
    }

    Tensor sum_layer(const Tensor &t1, const Tensor &t2, const std::string &name) {
        assert(t1.shape == t2.shape);
        Func summed;
        summed(c, i, j) = t1.f(c, i, j) + t2.f(c, i, j);
        Tensor output;
        output.f = summed;
        output.shape = t1.shape;
        output.name = name;
        return output;
    }

    Func softmax_layer(const Tensor &input, const int classes, const std::string &name) {
        assert(input.shape[0] == classes);
        RDom r(0, classes);
        Func exp_vals;
        exp_vals(c) = exp(input.f(c));
        Func output("output");
        output(c) = exp_vals(c) / sum(exp_vals(r.x));
        return output;
    }
};
}  // namespace

HALIDE_REGISTER_GENERATOR(Resnet50Generator, resnet50)