1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
#include "Halide.h"
#include <tuple>
#include <unordered_map>
namespace {
struct Tensor {
Halide::Func f;
std::vector<int> shape;
std::string name;
};
struct WeightShape {
int c; // output channels
int w;
int h;
int pad;
int stride;
};
// returns index of found value in array or -1 if not in array
int find_index(int value, std::vector<int> vec) {
std::vector<int>::iterator it = std::find(vec.begin(), vec.end(), value);
if (it == vec.end())
return -1;
return std::distance(vec.begin(), it);
}
class Resnet50Generator : public Halide::Generator<Resnet50Generator> {
public:
Input<Buffer<float, 3>> input{"input"};
/** parameter values for scaling layers **/
Input<Buffer<float, 1>> conv1_gamma{"conv1_gamma"};
Input<Buffer<float, 1>[4]> br1_gamma{"br1_gamma"};
Input<Buffer<float, 1>[16]> br2a_gamma{"br2a_gamma"};
Input<Buffer<float, 1>[16]> br2b_gamma{"br2b_gamma"};
Input<Buffer<float, 1>[16]> br2c_gamma{"br2c_gamma"};
Input<Buffer<float, 1>> conv1_beta{"conv1_beta"};
Input<Buffer<float, 1>[4]> br1_beta{"br1_beta"};
Input<Buffer<float, 1>[16]> br2a_beta{"br2a_beta"};
Input<Buffer<float, 1>[16]> br2b_beta{"br2b_beta"};
Input<Buffer<float, 1>[16]> br2c_beta{"br2c_beta"};
Input<Buffer<float, 1>> conv1_mu{"conv1_mu"};
Input<Buffer<float, 1>[4]> br1_mu{"br1_mu"};
Input<Buffer<float, 1>[16]> br2a_mu{"br2a_mu"};
Input<Buffer<float, 1>[16]> br2b_mu{"br2b_mu"};
Input<Buffer<float, 1>[16]> br2c_mu{"br2c_mu"};
Input<Buffer<float, 1>> conv1_sig{"conv1_sig"};
Input<Buffer<float, 1>[4]> br1_sig{"br1_sig"};
Input<Buffer<float, 1>[16]> br2a_sig{"br2a_sig"};
Input<Buffer<float, 1>[16]> br2b_sig{"br2b_sig"};
Input<Buffer<float, 1>[16]> br2c_sig{"br2c_sig"};
/** weights and biases for convolutions **/
Input<Buffer<float, 4>> conv1_weights{"conv1_weights"};
Input<Buffer<float, 4>[4]> br1_conv_weights{"br1_conv_weights"};
Input<Buffer<float, 4>[16]> br2a_conv_weights{"br2a_conv_weights"};
Input<Buffer<float, 4>[16]> br2b_conv_weights{"br2b_conv_weights"};
Input<Buffer<float, 4>[16]> br2c_conv_weights{"br2c_conv_weights"};
Input<Buffer<float, 2>> fc1000_weights{"fc1000_weights"};
Input<Buffer<float, 1>> fc1000_bias{"fc1000_bias"};
Output<Buffer<float, 1>> final_output{"final_output"};
/** list out shapes of each layers weights **/
// weight shapes: out channels, kernel_w, kernel_h, pad, stride. In channels infered by input tensor shape
const WeightShape conv1_ws = {64, 7, 7, 3, 2};
const WeightShape pool1_ws = {64, 3, 3, 1, 2};
const WeightShape pool5_ws = {2048, 7, 7, 0, 1};
const WeightShape fc1000_ws = {1000, 1, 1, 0, 1}; // 1x1 conv with 2048 input channels and 1000 output channels
// res2a, res2b, res2c all have shame shapes
const WeightShape res2x_br2a_ws = {64, 1, 1, 0, 1};
const WeightShape res2a_br2b_ws = {64, 3, 3, 1, 1};
const WeightShape res2x_br2b_ws = {64, 3, 3, 1, 1};
const WeightShape res2x_br2c_ws = {256, 1, 1, 0, 1};
const WeightShape res2a_br1_ws = {256, 1, 1, 0, 1};
// res3x is same for most layers
const WeightShape res3x_br2a_ws = {128, 1, 1, 0, 1};
const WeightShape res3a_br2b_ws = {128, 3, 3, 1, 2};
const WeightShape res3x_br2b_ws = {128, 3, 3, 1, 1};
const WeightShape res3x_br2c_ws = {512, 1, 1, 0, 1};
const WeightShape res3a_br1_ws = {512, 1, 1, 0, 2};
const WeightShape res4x_br2a_ws = {256, 1, 1, 0, 1};
const WeightShape res4a_br2b_ws = {256, 3, 3, 1, 2};
const WeightShape res4x_br2b_ws = {256, 3, 3, 1, 1};
const WeightShape res4x_br2c_ws = {1024, 1, 1, 0, 1};
const WeightShape res4a_br1_ws = {1024, 1, 1, 0, 2};
const WeightShape res5x_br2a_ws = {512, 1, 1, 0, 1};
const WeightShape res5a_br2b_ws = {512, 3, 3, 1, 2};
const WeightShape res5x_br2b_ws = {512, 3, 3, 1, 1};
const WeightShape res5x_br2c_ws = {2048, 1, 1, 0, 1};
const WeightShape res5a_br1_ws = {2048, 1, 1, 0, 2};
const WeightShape br1_ws[4] = {res2a_br1_ws, res3a_br1_ws, res4a_br1_ws, res5a_br1_ws};
const WeightShape br2a_ws[16] = {res2x_br2a_ws, res2x_br2a_ws, res2x_br2a_ws,
res3x_br2a_ws, res3x_br2a_ws, res3x_br2a_ws, res3x_br2a_ws,
res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws, res4x_br2a_ws,
res5x_br2a_ws, res5x_br2a_ws, res5x_br2a_ws};
const WeightShape br2b_ws[16] = {res2a_br2b_ws, res2x_br2b_ws, res2x_br2b_ws,
res3a_br2b_ws, res3x_br2b_ws, res3x_br2b_ws, res3x_br2b_ws,
res4a_br2b_ws, res4x_br2b_ws, res4x_br2b_ws, res4x_br2b_ws, res4x_br2b_ws, res4x_br2b_ws,
res5a_br2b_ws, res5x_br2b_ws, res5x_br2b_ws};
const WeightShape br2c_ws[16] = {res2x_br2c_ws, res2x_br2c_ws, res2x_br2c_ws,
res3x_br2c_ws, res3x_br2c_ws, res3x_br2c_ws, res3x_br2c_ws,
res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws, res4x_br2c_ws,
res5x_br2c_ws, res5x_br2c_ws, res5x_br2c_ws};
Var c, i, j;
void generate() {
// Algorithm
/** Declare arrays of other functions and build the requested block **/
Tensor br1_conv[4];
Tensor br1_norm[4];
Tensor br1_scale[4];
Tensor br2a_conv[16];
Tensor br2a_norm[16];
Tensor br2a_scaled[16];
Tensor br2a_relu[16];
Tensor br2b_conv[16];
Tensor br2b_norm[16];
Tensor br2b_scaled[16];
Tensor br2b_relu[16];
Tensor br2c_conv[16];
Tensor br2c_norm[16];
Tensor br2c_scaled[16];
Tensor resunit_sum[16];
Tensor resunit_relu[16];
Tensor pool5;
Tensor fc1000;
Tensor softmax;
// these tensors are different depending on the block and must be conditionally assigned.
Tensor input_t;
std::vector<int> input_shape;
Tensor br2a_input;
Tensor resunit_sum_input;
// used only for block_id == 0
Tensor conv1, norm1, scaled1, relu1, pool1;
std::vector<int> branch1_indices{0, 3, 7, 13};
/** if block_id is 0 build the (stem) conv1 section **/
for (int block_id = 0; block_id < 16; ++block_id) {
if (block_id == 0) {
input_shape = {3, 224, 224};
input_t.f = input;
input_t.shape = input_shape;
conv1 = conv2D(input_t, conv1_ws, conv1_weights, "conv1");
norm1 = norm_layer(conv1, conv1_mu, conv1_sig, "norm1");
scaled1 = scale_layer(norm1, conv1_gamma, conv1_beta, "scale1");
relu1 = relu_layer(scaled1, "relu1");
pool1 = max_pool_layer(relu1, pool1_ws, "pool1");
br2a_input = pool1;
} else {
br2a_input = resunit_relu[block_id - 1];
}
// build branch1 if this section has branch1
int br1_i = find_index(block_id, branch1_indices);
if (br1_i >= 0) {
br1_conv[br1_i] = conv2D(br2a_input, br1_ws[br1_i], br1_conv_weights[br1_i], "br1_conv");
br1_norm[br1_i] = norm_layer(br1_conv[br1_i], br1_mu[br1_i], br1_sig[br1_i], "br1_norm");
br1_scale[br1_i] = scale_layer(br1_norm[br1_i], br1_gamma[br1_i], br1_beta[br1_i], "br1_scale");
resunit_sum_input = br1_scale[br1_i];
} else {
resunit_sum_input = resunit_relu[block_id - 1];
}
// branch2a
auto weights = br2a_conv_weights[block_id];
br2a_conv[block_id] = conv2D(br2a_input, br2a_ws[block_id], weights, "block" + std::to_string(block_id) + "_2a_conv");
br2a_norm[block_id] = norm_layer(br2a_conv[block_id], br2a_mu[block_id], br2a_sig[block_id], "block" + std::to_string(block_id) + "_2a_norm");
br2a_scaled[block_id] = scale_layer(br2a_norm[block_id], br2a_gamma[block_id], br2a_beta[block_id], "block" + std::to_string(block_id) + "_2a_scale");
br2a_relu[block_id] = relu_layer(br2a_scaled[block_id], "2a_relu");
// branch 2b
weights = br2b_conv_weights[block_id];
br2b_conv[block_id] = conv2D(br2a_relu[block_id], br2b_ws[block_id], weights, "block" + std::to_string(block_id) + "_2b_conv");
br2b_norm[block_id] = norm_layer(br2b_conv[block_id], br2b_mu[block_id], br2b_sig[block_id], "block" + std::to_string(block_id) + "_2b_norm");
br2b_scaled[block_id] = scale_layer(br2b_norm[block_id], br2b_gamma[block_id], br2b_beta[block_id], "block" + std::to_string(block_id) + "_2b_scale");
br2b_relu[block_id] = relu_layer(br2b_scaled[block_id], "2b_relu");
// branch 2c
weights = br2c_conv_weights[block_id];
br2c_conv[block_id] = conv2D(br2b_relu[block_id], br2c_ws[block_id], weights, "block" + std::to_string(block_id) + "_2c_conv");
br2c_norm[block_id] = norm_layer(br2c_conv[block_id], br2c_mu[block_id], br2c_sig[block_id], "block" + std::to_string(block_id) + "_2c_norm");
br2c_scaled[block_id] = scale_layer(br2c_norm[block_id], br2c_gamma[block_id], br2c_beta[block_id], "block" + std::to_string(block_id) + "_2c_scale");
// create residual unit
resunit_sum[block_id] = sum_layer(resunit_sum_input, br2c_scaled[block_id], "block" + std::to_string(block_id) + "_res_sum");
resunit_relu[block_id] = relu_layer(resunit_sum[block_id], "block" + std::to_string(block_id) + "_res_relu");
// create final 3 layers
if (block_id == 15) {
pool5 = avg_pool_layer(resunit_relu[block_id], pool5_ws, "pool5");
fc1000 = fc_layer(pool5, fc1000_ws, fc1000_weights, fc1000_bias, "fc");
final_output = softmax_layer(fc1000, 1000, "softmax");
}
}
// TODO: Actually schedule this.
conv1.f.compute_root();
scaled1.f.compute_root();
relu1.f.compute_root();
pool1.f.compute_root();
for (int i = 0; i < 16; i++) {
br2a_relu[i].f.compute_root().vectorize(c, 8).parallel(j);
br2b_relu[i].f.compute_root().vectorize(c, 8).parallel(j);
resunit_relu[i].f.compute_root().vectorize(c, 8).parallel(j);
}
pool5.f.compute_root();
fc1000.f.compute_root();
softmax.f.compute_root();
}
private:
Func pad(Func f, Expr width, Expr height) {
Halide::Region bounds(f.dimensions());
bounds[1].min = 0;
bounds[1].extent = width;
bounds[2].min = 0;
bounds[2].extent = height;
return Halide::BoundaryConditions::constant_exterior(f, 0.0f, bounds);
}
std::vector<int> compute_shape(const Tensor &in, const WeightShape ¶ms) {
int w = (1.0 / params.stride) * (params.pad * 2 + in.shape[1] - params.w + 1 + params.stride - 1);
int h = (1.0 / params.stride) * (params.pad * 2 + in.shape[2] - params.h + 1 + params.stride - 1);
int c = params.c;
return {c, w, h};
}
Tensor conv2D(const Tensor &input, const WeightShape &weight_shape, const Func &weights, const std::string &name) {
int p = weight_shape.pad;
Func padded;
// pad input
if (p) {
padded = pad(input.f, input.shape[1], input.shape[2]);
} else {
padded = input.f;
}
RDom r(0, input.shape[0], 0, weight_shape.w, 0, weight_shape.h);
Func conv;
conv(c, i, j) += weights(c, r.y, r.z, r.x) * padded(r.x, weight_shape.stride * i + r.y - p, weight_shape.stride * j + r.z - p);
Tensor output;
output.f = conv;
output.name = name;
output.shape = compute_shape(input, weight_shape);
return output;
}
// assumes input is 3D (c, w, h) where w and h = 1
Tensor fc_layer(const Tensor &input, const WeightShape &weight_shape, const Func &weights, const Func &bias, const std::string &name) {
RDom r(0, input.shape[0]);
Func fc;
fc(c) = bias(c);
fc(c) += weights(c, r.x) * input.f(r.x, 0, 0);
Tensor output;
output.f = fc;
output.name = name;
output.shape = compute_shape(input, weight_shape);
return output;
}
Tensor relu_layer(const Tensor &input, const std::string &name) {
Func relu;
relu(c, i, j) = max(0.0f, input.f(c, i, j));
Tensor output;
output.f = relu;
output.shape = input.shape;
output.name = name;
return output;
}
Tensor max_pool_layer(const Tensor &input, const WeightShape &weight_shape, const std::string &name) {
int p = weight_shape.pad;
Func padded;
if (p) {
padded = pad(input.f, input.shape[1], input.shape[2]);
} else {
padded = input.f;
}
RDom r(0, weight_shape.w, 0, weight_shape.h);
Func pool;
pool(c, i, j) = maximum(padded(c, weight_shape.stride * i + r.x - p, weight_shape.stride * j + r.y - p));
Tensor output;
output.f = pool;
output.name = name;
output.shape = compute_shape(input, weight_shape);
return output;
}
Tensor avg_pool_layer(const Tensor &input, const WeightShape &weight_shape, const std::string &name) {
int p = weight_shape.pad;
Func padded;
if (p) {
padded = pad(input.f, input.shape[1], input.shape[2]);
} else {
padded = input.f;
}
RDom r(0, weight_shape.w, 0, weight_shape.h);
float scale = weight_shape.w * weight_shape.h;
Func pool;
float n = 1.0f / scale;
pool(c, i, j) += n * padded(c, weight_shape.stride * i + r.x - p, weight_shape.stride * j + r.y - p);
Tensor output;
output.f = pool;
output.name = name;
output.shape = compute_shape(input, weight_shape);
return output;
}
Tensor norm_layer(const Tensor &input, const Func &mu, const Func &sigma, const std::string &name) {
Func normed;
Expr e = input.f(c, i, j);
normed(c, i, j) = (input.f(c, i, j) - mu(c)) / (sqrt(sigma(c) + 1e-5f));
Tensor output;
output.f = normed;
output.shape = input.shape;
output.name = name;
return output;
}
Tensor scale_layer(const Tensor &input, const Func &gamma, const Func &beta, const std::string &name) {
Func scaled;
scaled(c, i, j) = input.f(c, i, j) * gamma(c) + beta(c);
Tensor output;
output.f = scaled;
output.shape = input.shape;
output.name = name;
return output;
}
Tensor sum_layer(const Tensor &t1, const Tensor &t2, const std::string &name) {
assert(t1.shape == t2.shape);
Func summed;
summed(c, i, j) = t1.f(c, i, j) + t2.f(c, i, j);
Tensor output;
output.f = summed;
output.shape = t1.shape;
output.name = name;
return output;
}
Func softmax_layer(const Tensor &input, const int classes, const std::string &name) {
assert(input.shape[0] == classes);
RDom r(0, classes);
Func exp_vals;
exp_vals(c) = exp(input.f(c));
Func output("output");
output(c) = exp_vals(c) / sum(exp_vals(r.x));
return output;
}
};
} // namespace
HALIDE_REGISTER_GENERATOR(Resnet50Generator, resnet50)
|