File: basics.py

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (624 lines) | stat: -rw-r--r-- 16,769 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import re
from contextlib import contextmanager

import halide as hl


@contextmanager
def assert_throws(exn, msg):
    try:
        yield
    except Exception as e:
        if not isinstance(e, exn):
            raise
        if not re.search(msg, str(e)):
            raise AssertionError(
                f"Expected {exn.__name__} with message matching /{msg}/, but got: {type(e).__name__} '{e}'"
            )
    else:
        raise AssertionError(
            f"Expected {exn.__name__} to be raised, but no exception occurred."
        )


def test_compiletime_error():
    x = hl.Var("x")
    y = hl.Var("y")
    f = hl.Func("f")
    f[x, y] = hl.u16(x + y)
    # Deliberate type-mismatch error
    buf = hl.Buffer(hl.UInt(8), [2, 2])
    with assert_throws(
        hl.HalideError,
        "Error: Output buffer f has type uint16 but type of the buffer passed in is uint8",
    ):
        f.realize(buf)


def test_runtime_error():
    x = hl.Var("x")
    f = hl.Func("f")
    f[x] = hl.u8(x)
    f.bound(x, 0, 1)
    # Deliberate runtime error
    buf = hl.Buffer(hl.UInt(8), [10])
    with assert_throws(
        hl.HalideError,
        r"Error: Bounds given for f(\$\d+)? in x \(from 0 to 0\) do not cover required region \(from 0 to 9\)",
    ):
        f.realize(buf)


def test_misused_and():
    x = hl.Var("x")
    y = hl.Var("y")
    f = hl.Func("f")
    with assert_throws(ValueError, "cannot be converted to a bool"):
        f[x, y] = hl.print_when(x == 0 and y == 0, 0, "x=", x, "y=", y)
        f.realize([10, 10])


def test_misused_or():
    x = hl.Var("x")
    y = hl.Var("y")
    f = hl.Func("f")
    with assert_throws(ValueError, "cannot be converted to a bool"):
        f[x, y] = hl.print_when(x == 0 or y == 0, 0, "x=", x, "y=", y)
        f.realize([10, 10])


def test_basics():
    input = hl.ImageParam(hl.UInt(16), 2, "input")
    x, y = hl.Var("x"), hl.Var("y")

    blur_x = hl.Func("blur_x")
    blur_xx = hl.Func("blur_xx")
    blur_y = hl.Func("blur_y")

    yy = hl.i32(1)
    assert yy.type() == hl.Int(32)

    z = x + 1
    input[x, y]
    input[0, 0]
    input[z, y]
    input[x + 1, y]
    input[x, y] + input[x + 1, y]

    if False:
        aa = blur_x[x, y]
        bb = blur_x[x, y + 1]
        aa + bb
        blur_x[x, y] + blur_x[x, y + 1]

    (input[x, y] + input[x + 1, y]) / 2
    blur_x[x, y]
    blur_xx[x, y] = input[x, y]

    blur_x[x, y] = (input[x, y] + input[x + 1, y] + input[x + 2, y]) / 3
    blur_y[x, y] = (blur_x[x, y] + blur_x[x, y + 1] + blur_x[x, y + 2]) / 3

    xi, yi = hl.Var("xi"), hl.Var("yi")
    blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8)
    blur_x.compute_at(blur_y, x).vectorize(x, 8)
    blur_y.compile_jit()


def test_basics2():
    input = hl.ImageParam(hl.Float(32), 3, "input")
    hl.Param(hl.Float(32), "r_sigma", 0.1)
    s_sigma = 8

    x = hl.Var("x")
    y = hl.Var("y")
    hl.Var("z")
    hl.Var("c")

    # Add a boundary condition
    clamped = hl.Func("clamped")
    clamped[x, y] = input[
        hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), 0
    ]

    # Construct the bilateral grid
    r = hl.RDom([(0, s_sigma), (0, s_sigma)], "r")
    clamped[x * s_sigma, y * s_sigma]
    clamped[x * s_sigma * hl.i32(1), y * s_sigma * hl.i32(1)]
    clamped[x * s_sigma - hl.i32(s_sigma // 2), y * s_sigma - hl.i32(s_sigma // 2)]
    clamped[x * s_sigma - s_sigma // 2, y * s_sigma - s_sigma // 2]
    clamped[x * s_sigma + r.x - s_sigma // 2, y * s_sigma + r.y - s_sigma // 2]

    with assert_throws(hl.HalideError, "Implicit cast from float32 to int"):
        clamped[x * s_sigma - s_sigma / 2, y * s_sigma - s_sigma / 2]


def test_basics3():
    input = hl.ImageParam(hl.Float(32), 3, "input")
    r_sigma = hl.Param(
        hl.Float(32), "r_sigma", 0.1
    )  # Value needed if not generating an executable
    s_sigma = 8  # This is passed during code generation in the C++ version

    x = hl.Var("x")
    y = hl.Var("y")
    z = hl.Var("z")
    c = hl.Var("c")

    # Add a boundary condition
    clamped = hl.Func("clamped")
    clamped[x, y] = input[
        hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), 0
    ]

    # Construct the bilateral grid
    r = hl.RDom([(0, s_sigma), (0, s_sigma)], "r")
    val = clamped[x * s_sigma + r.x - s_sigma // 2, y * s_sigma + r.y - s_sigma // 2]
    val = hl.clamp(val, 0.0, 1.0)
    zi = hl.i32((val / r_sigma) + 0.5)
    histogram = hl.Func("histogram")
    histogram[x, y, z, c] = 0.0

    ss = hl.select(c == 0, val, 1.0)
    left = histogram[x, y, zi, c]
    left += 5
    left += ss


def test_basics4():
    # Test for f[g[r]] = ...
    # See https://github.com/halide/Halide/issues/4285
    x = hl.Var("x")
    f = hl.Func("f")
    g = hl.Func("g")
    g[x] = 1
    f[x] = 0.0
    r = hl.RDom([(0, 100)])
    f[g[r]] = 2.5
    f.compute_root()
    f.compile_jit()


def test_basics5():
    # Test Func.in_()
    x, y = hl.Var("x"), hl.Var("y")
    f = hl.Func("f")
    g = hl.Func("g")
    h = hl.Func("h")
    f[x, y] = y
    r = hl.RDom([(0, 100)])
    g[x] = 0
    g[x] += f[x, r]
    h[x] = 0
    h[x] += f[x, r]
    f.in_(g).compute_at(g, x)
    f.in_(h).compute_at(h, x)
    g.compute_root()
    h.compute_root()
    p = hl.Pipeline([g, h])
    p.compile_jit()


def test_float_or_int():
    x = hl.Var("x")
    i32, f32 = hl.Int(32), hl.Float(32)

    assert hl.Expr(x).type() == i32
    assert (x * 2).type() == i32
    assert (x / 2).type() == i32
    assert ((x // 2) - 1 + 2 * (x % 2)).type() == i32
    assert ((x / 2) - 1 + 2 * (x % 2)).type() == i32
    assert (x / 2).type() == i32
    assert (x / 2.0).type() == f32
    assert (x // 2).type() == i32
    assert ((x // 2) - 1).type() == i32
    assert (x % 2).type() == i32
    assert (2 * (x % 2)).type() == i32
    assert ((x // 2) - 1 + 2 * (x % 2)).type() == i32

    assert type(x) is hl.Var
    assert (hl.Expr(x)).type() == i32
    assert (hl.Expr(2.0)).type() == f32
    assert (hl.Expr(2)).type() == i32
    assert (x + 2).type() == i32
    assert (2 + x).type() == i32
    assert (hl.Expr(2) + hl.Expr(3)).type() == i32
    assert (hl.Expr(2.0) + hl.Expr(3)).type() == f32
    assert (hl.Expr(2) + 3.0).type() == f32
    assert (hl.Expr(2) + 3).type() == i32
    assert (hl.Expr(x) + 2).type() == i32
    assert (2 + hl.Expr(x)).type() == i32
    assert (2 * (x + 2)).type() == i32
    assert (x + 0).type() == i32
    assert (x % 2).type() == i32
    assert (2 * x).type() == i32
    assert (x * 2).type() == i32
    assert (x * 2).type() == i32
    assert (x % 2).type() == i32
    assert ((x % 2) * 2).type() == i32
    assert (2 * (x % 2)).type() == i32
    assert ((x + 2) * 2).type() == i32


def test_operator_order():
    x = hl.Var("x")
    f = hl.Func("f")
    x + 1
    1 + x
    f[x] = x**2
    f[x] + 1
    hl.Expr(1) + f[x]
    1 + f[x]


def _check_is_u16(e):
    assert e.type() == hl.UInt(16), e.type()


def test_int_promotion():
    # Verify that (Exprlike op literal) correctly matches the type
    # of the literal to the Exprlike (rather than promoting the result to int32).
    # All types that use add_binary_operators() should be tested here.

    x = hl.Var("x")
    # All the binary ops are handled the same, so + is good enough

    # Exprlike = FuncRef
    f = hl.Func("f")
    f[x] = hl.u16(x)
    _check_is_u16(f[x] + 2)
    _check_is_u16(2 + f[x])

    # Exprlike = Expr
    e = hl.Expr(f[x])
    _check_is_u16(e + 2)
    _check_is_u16(2 + e)

    # Exprlike = Param
    p = hl.Param(hl.UInt(16))
    _check_is_u16(p + 2)
    _check_is_u16(2 + p)

    # Exprlike = RDom/RVar
    # Exprlike = Var
    # (skipped, since these can never have values of any type other than int32)


def test_vector_tile():
    # Test Func.tile() and Stage.tile() with vector arguments
    x, y, z = [hl.Var(c) for c in "xyz"]
    xi, yi = hl.vars("xi yi")
    xo, yo = hl.vars("xo yo")
    f = hl.Func("f")
    g = hl.Func("g")
    hl.Func("h")
    f[x, y] = y
    f[x, y] += x
    g[x, y, z] = x + y
    g[x, y, z] += z
    f.tile([x, y], [xo, yo], [x, y], [8, 8])
    f.update(0).tile([x, y], [xo, yo], [xi, yi], [8, 8])
    g.tile([x, y], [xo, yo], [x, y], [8, 8], hl.TailStrategy.RoundUp)
    g.update(0).tile([x, y], [xo, yo], [xi, yi], [8, 8], hl.TailStrategy.GuardWithIf)
    p = hl.Pipeline([f, g])
    p.compile_jit()


def test_scalar_funcs():
    input = hl.ImageParam(hl.UInt(16), 0, "input")

    f = hl.Func("f")
    g = hl.Func("g")

    input[()]

    (input[()] + input[()]) / 2
    f[()]
    g[()]

    f[()] = (input[()] + input[()] + input[()]) / 3
    g[()] = (f[()] + f[()] + f[()]) / 3

    g.compile_jit()


def test_bool_conversion():
    x = hl.Var("x")
    f = hl.Func("f")
    f[x] = x
    # Verify that this doesn't fail with 'Argument passed to specialize must be of type bool'
    f.compute_root().specialize(True)


def test_typed_funcs():
    x = hl.Var("x")
    y = hl.Var("y")

    f = hl.Func("f")
    assert not f.defined()
    with assert_throws(hl.HalideError, "it is undefined"):
        assert f.type() == hl.Int(32)

    with assert_throws(hl.HalideError, "it is undefined"):
        assert f.outputs() == 0

    with assert_throws(hl.HalideError, "it is undefined"):
        assert f.dimensions() == 0

    f = hl.Func(hl.Int(32), 2, "f")
    assert not f.defined()
    assert f.type() == hl.Int(32)
    assert f.types() == [hl.Int(32)]
    assert f.outputs() == 1
    assert f.dimensions() == 2

    f = hl.Func([hl.Int(32), hl.Float(64)], 3, "f")
    assert not f.defined()
    with assert_throws(hl.HalideError, "it returns a Tuple"):
        assert f.type() == hl.Int(32)

    assert f.types() == [hl.Int(32), hl.Float(64)]
    assert f.outputs() == 2
    assert f.dimensions() == 3

    f = hl.Func(hl.Int(32), 1, "f")
    with assert_throws(
        hl.HalideError,
        "is constrained to have exactly 1 dimensions, but is defined with 2 dimensions",
    ):
        f[x, y] = hl.i32(0)
        f.realize([10, 10])

    f = hl.Func(hl.Int(32), 2, "f")
    with assert_throws(
        hl.HalideError,
        "is constrained to only hold values of type int32 but is defined with values of type int16",
    ):
        f[x, y] = hl.i16(0)
        f.realize([10, 10])

    f = hl.Func((hl.Int(32), hl.Float(32)), 2, "f")
    with assert_throws(
        hl.HalideError,
        r"is constrained to only hold values of type \(int32, float32\) "
        r"but is defined with values of type \(int16, float64\)",
    ):
        f[x, y] = (hl.i16(0), hl.f64(0))


def test_requirements():
    delta = hl.Param(hl.Int(32), "delta")
    x = hl.Var("x")
    f = hl.Func("f_requirements")
    f[x] = x + delta

    # Add a requirement
    p = hl.Pipeline([f])
    p.add_requirement(delta != 0)  # error_args omitted
    p.add_requirement(delta > 0, "negative values are bad", delta)

    delta.set(1)
    p.realize([10])

    with assert_throws(hl.HalideError, r"Requirement Failed: \(false\)"):
        delta.set(0)
        p.realize([10])

    with assert_throws(
        hl.HalideError, r"Requirement Failed: \(false\) negative values are bad -1"
    ):
        delta.set(-1)
        p.realize([10])


def test_implicit_convert_int64():
    assert (hl.i32(0) + 0x7FFFFFFF).type() == hl.Int(32)
    assert (hl.i32(0) + (0x7FFFFFFF + 1)).type() == hl.Int(64)


def test_pow_rpow():
    two = hl.Expr(2.0)
    x = hl.Var("x")
    for three in (3, hl.Expr(3)):
        f = hl.Func("f")
        f[x] = 0.0
        f[0] = two**three
        f[1] = three**two
        assert list(f.realize([2])) == [8.0, 9.0]


def test_unevaluated_funcref():
    x = hl.Var("x")
    f = hl.Func("f")

    # `ref` is a FuncRef
    ref = f[x]

    # Because the func `f` did not have a pure definition, `ref` is set to an
    # UnevaluatedFuncRefExpr with RHS `1` and operator `+`. In C++, this would
    # immediately create a new update stage (and the associated pure definition).
    ref += 1

    with assert_throws(
        TypeError,
        r"unsupported operand type\(s\) for \+=: 'halide.halide_\._UnevaluatedFuncRefExpr' and 'int'",
    ):
        # We've gone too far... UnevaluatedFuncRefExpr doesn't define any binary
        # operators. This does not implicitly cast to Expr.
        ref += 1

    # Since `ref` is still an unevaluated FuncRef, this line will cause the creation
    # of an update stage along with an implicit pure definition (because the operation
    # is +, the initialization will be to 0).
    f[x] = ref
    with assert_throws(
        hl.HalideError,
        r"Cannot use an unevaluated reference to 'f(\$\d+)?' to define an update when a pure definition already exists.",
    ):
        # Trying to do this twice is asking for problems, so we don't allow it.
        f[x] = ref

    # Check that defining the first update stage worked.
    assert f.realize([1])[0] == 1

    with assert_throws(
        hl.HalideError,
        r"Cannot use an unevaluated reference to 'f\$\d+' to define an update at a different location.",
    ):
        # We also can't use the unevaluated ref to define an update in a
        # different func (even if they look like they have the same name)
        f = hl.Func("f")
        f[x] = ref

    # A few more tests that check the results of various equivalent-looking rewrites.
    f = hl.Func("f")
    ref = f[x]
    ref += 1
    f[x] = ref
    assert f.realize([1])[0] == 1

    f = hl.Func("f")
    ref = f[x] + 1
    f[x] = ref
    assert f.realize([1])[0] == 1

    f = hl.Func("f")
    f[x] = f[x] + 1
    assert f.realize([1])[0] == 1

    f = hl.Func("f")
    f[x] += 1
    assert f.realize([1])[0] == 1

    with assert_throws(
        hl.HalideError,
        r"Error: Can't call Func \"f(\$\d+)?\" because it has not yet been defined\.",
    ):
        # This is invalid because we only allow unevaluated func refs on the LHS of a
        # binary operator.
        f = hl.Func("f")
        f[x] = 1 + f[x]

    with assert_throws(
        hl.HalideError,
        r"Cannot use an unevaluated reference to 'f(\$\d+)?' to define an update at a different location\.",
    ):
        # This is OK
        g = hl.Func("g")
        g[0] += 1
        assert list(g.realize([2])) == [1, 0]

        # This is invalid because the list of arguments changed
        f = hl.Func("f")
        f[0] = f[x] + 1

    # A test to make sure that indexing at a FuncRef is OK
    g = hl.Func("g")
    g[x] = 2

    f = hl.Func("f")
    f[g[0]] += 1
    assert list(f.realize([3])) == [0, 0, 1]

    # A test to make sure that placeholder args work
    g = hl.Func("g")
    g[x] = 2

    f = hl.Func("f")
    f[hl._] += g[hl._]
    assert list(f.realize([1])) == [2]


def test_implicit_update_by_int():
    x = hl.Var("x")

    f = hl.Func("f")
    f[x] += 1
    assert f.realize([1])[0] == 1

    f = hl.Func("f")
    f[x] -= 1
    assert f.realize([1])[0] == -1

    f = hl.Func("f")
    f[x] *= 2
    assert f.realize([1])[0] == 2

    f = hl.Func("f")
    f[x] /= 1
    assert f.realize([1])[0] == 1

    f = hl.Func("f")
    f[x] /= 2
    assert f.realize([1])[0] == 0


def test_implicit_update_by_float():
    # The floating-point equality comparisons in this test
    # should be exact in any halfway sane floating point
    # implementation. If these checks fail because of
    # imprecision, we should be informed.

    x = hl.Var("x")

    f = hl.Func("f")
    f[x] += 1.0
    assert f.realize([1])[0] == 1.0

    f = hl.Func("f")
    f[x] -= 1.0
    assert f.realize([1])[0] == -1.0

    f = hl.Func("f")
    f[x] *= 2.0
    assert f.realize([1])[0] == 2.0

    f = hl.Func("f")
    f[x] /= 1.0
    assert f.realize([1])[0] == 1.0

    f = hl.Func("f")
    f[x] /= 2.0
    assert f.realize([1])[0] == 0.5


def test_print_ir():
    im = hl.ImageParam()
    assert str(im) == "<halide.ImageParam ImageParam()>"

    im = hl.OutputImageParam()
    assert str(im) == "<halide.OutputImageParam OutputImageParam()>"

    im = hl.ImageParam(hl.UInt(16), 2, "input")
    assert str(im) == "<halide.ImageParam 'input', dims: 2, type: uint16>"

    r = hl.RDom()
    assert str(r) == "<halide.RDom RDom()>"

    p = hl.Pipeline()
    assert str(p) == "<halide.Pipeline Pipeline()>"


if __name__ == "__main__":
    test_compiletime_error()
    test_runtime_error()
    test_misused_and()
    test_misused_or()
    test_typed_funcs()
    test_float_or_int()
    test_operator_order()
    test_int_promotion()
    test_vector_tile()
    test_basics()
    test_basics2()
    test_basics3()
    test_basics4()
    test_basics5()
    test_scalar_funcs()
    test_bool_conversion()
    test_requirements()
    test_implicit_convert_int64()
    test_pow_rpow()
    test_unevaluated_funcref()
    test_implicit_update_by_int()
    test_implicit_update_by_float()
    test_print_ir()