1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
import halide as hl
import numpy as np
import gc
import sys
def test_ndarray_to_buffer(reverse_axes=True):
a0 = np.ones((200, 300), dtype=np.int32)
# Buffer always shares data (when possible) by default,
# and maintains the shape of the data source. (note that
# the ndarray is col-major by default!)
b0 = hl.Buffer(a0, "float32_test_buffer", reverse_axes)
assert b0.type() == hl.Int(32)
assert b0.name() == "float32_test_buffer"
assert b0.all_equal(1)
if reverse_axes:
assert b0.dim(0).min() == 0
assert b0.dim(0).max() == 299
assert b0.dim(0).extent() == 300
assert b0.dim(0).stride() == 1
assert b0.dim(1).min() == 0
assert b0.dim(1).max() == 199
assert b0.dim(1).extent() == 200
assert b0.dim(1).stride() == 300
a0[12, 34] = 56
assert b0[34, 12] == 56
b0[56, 34] = 12
assert a0[34, 56] == 12
else:
assert b0.dim(0).min() == 0
assert b0.dim(0).max() == 199
assert b0.dim(0).extent() == 200
assert b0.dim(0).stride() == 300
assert b0.dim(1).min() == 0
assert b0.dim(1).max() == 299
assert b0.dim(1).extent() == 300
assert b0.dim(1).stride() == 1
a0[12, 34] = 56
assert b0[12, 34] == 56
b0[56, 34] = 12
assert a0[56, 34] == 12
def test_buffer_to_ndarray(reverse_axes=True):
buf0 = hl.Buffer(hl.Int(16), [4, 6])
assert buf0.type() == hl.Int(16)
buf0.fill(0)
buf0[1, 2] = 42
assert buf0[1, 2] == 42
# This is subtle: the default behavior when converting
# a Buffer to an np.array (or ndarray, etc) is to reverse the
# order of the axes, since Halide prefers column-major and
# the rest of Python prefers row-major. By calling reverse_axes()
# before that conversion, we end up doing a *double* reverse, i.e,
# not reversing at all. So the 'not' here is correct.
buf = buf0.reverse_axes() if not reverse_axes else buf0
# Should share storage with buf
array_shared = np.array(buf, copy=False)
assert array_shared.dtype == np.int16
if reverse_axes:
assert array_shared.shape == (6, 4)
assert array_shared[2, 1] == 42
else:
assert array_shared.shape == (4, 6)
assert array_shared[1, 2] == 42
# Should *not* share storage with buf
array_copied = np.array(buf, copy=True)
assert array_copied.dtype == np.int16
if reverse_axes:
assert array_copied.shape == (6, 4)
assert array_copied[2, 1] == 42
else:
assert array_copied.shape == (4, 6)
assert array_copied[1, 2] == 42
# Should affect array_shared but not array_copied
buf0[1, 2] = 3
if reverse_axes:
assert array_shared[2, 1] == 3
assert array_copied[2, 1] == 42
else:
assert array_shared[1, 2] == 3
assert array_copied[1, 2] == 42
# Ensure that Buffers that have nonzero mins get converted correctly,
# since the Python Buffer Protocol doesn't have the 'min' concept
cropped_buf0 = buf0.copy()
cropped_buf0.crop(dimension=0, min=1, extent=2)
cropped_buf = cropped_buf0.reverse_axes() if not reverse_axes else cropped_buf0
# Should share storage with cropped (and buf)
cropped_array_shared = np.array(cropped_buf, copy=False)
assert cropped_array_shared.dtype == np.int16
if reverse_axes:
assert cropped_array_shared.shape == (6, 2)
assert cropped_array_shared[2, 0] == 3
else:
assert cropped_array_shared.shape == (2, 6)
assert cropped_array_shared[0, 2] == 3
# Should *not* share storage with anything
cropped_array_copied = np.array(cropped_buf, copy=True)
assert cropped_array_copied.dtype == np.int16
if reverse_axes:
assert cropped_array_copied.shape == (6, 2)
assert cropped_array_copied[2, 0] == 3
else:
assert cropped_array_copied.shape == (2, 6)
assert cropped_array_copied[0, 2] == 3
cropped_buf0[1, 2] = 5
assert cropped_buf0[1, 2] == 5
if reverse_axes:
assert cropped_buf[1, 2] == 5
assert cropped_array_shared[2, 0] == 5
assert cropped_array_copied[2, 0] == 3
else:
assert cropped_buf[2, 1] == 5
assert cropped_array_shared[0, 2] == 5
assert cropped_array_copied[0, 2] == 3
def _assert_fn(e):
assert e
def _is_64bits():
return sys.maxsize > 2**32
def test_for_each_element():
buf = hl.Buffer(hl.Float(32), [3, 4])
for x in range(3):
for y in range(4):
buf[x, y] = x + y
# Can't use 'assert' in a lambda, but can call a fn that uses it.
buf.for_each_element(
lambda pos, buf=buf: _assert_fn(buf[pos[0], pos[1]] == pos[0] + pos[1])
)
def test_fill_all_equal():
buf = hl.Buffer(hl.Int(32), [3, 4])
buf.fill(3)
assert buf.all_equal(3)
buf[1, 2] = 4
assert not buf.all_equal(3)
def test_bufferinfo_sharing():
# Don't bother testing this on 32-bit systems (our "huge" size is too large there)
if not _is_64bits():
print("skipping test_bufferinfo_sharing()")
return
# Torture-test to ensure that huge Python Buffer Protocol allocations are properly
# shared (rather than copied), and also that the lifetime is held appropriately.
a0 = np.ones((20000, 30000), dtype=np.int32)
b0 = hl.Buffer(a0)
del a0
for i in range(200):
b1 = hl.Buffer(b0)
b0 = b1
b1 = None
gc.collect()
b0[56, 34] = 12
assert b0[56, 34] == 12
def test_float16():
array_in = np.zeros((256, 256, 3), dtype=np.float16, order="F")
hl_img = hl.Buffer(array_in)
np.array(hl_img, copy=False)
# TODO: https://github.com/halide/Halide/issues/6849
# def test_bfloat16():
# try:
# from tensorflow.python.lib.core import _pywrap_bfloat16
# bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
# array_in = np.zeros((256, 256, 3), dtype=bfloat16, order='F')
# hl_img = hl.Buffer(array_in)
# array_out = np.array(hl_img, copy = False)
# except ModuleNotFoundError as e:
# print("skipping test_bfloat16() because tensorflow was not found: %s" % str(e))
# return
# else:
# assert False, "This should not happen"
def test_int64():
array_in = np.zeros((256, 256, 3), dtype=np.int64, order="F")
hl_img = hl.Buffer(array_in)
np.array(hl_img, copy=False)
def test_make_interleaved():
w = 7
h = 13
c = 3
b = hl.Buffer.make_interleaved(type=hl.UInt(8), width=w, height=h, channels=c)
assert b.dim(0).min() == 0
assert b.dim(0).extent() == w
assert b.dim(0).stride() == c
assert b.dim(1).min() == 0
assert b.dim(1).extent() == h
assert b.dim(1).stride() == w * c
assert b.dim(2).min() == 0
assert b.dim(2).extent() == c
assert b.dim(2).stride() == 1
a = np.array(b, copy=False)
# NumPy shape order is opposite that of Halide shape order
assert a.shape == (c, h, w)
assert a.strides == (1, w * c, c)
assert a.dtype == np.uint8
def test_interleaved_ndarray():
w = 7
h = 13
c = 3
a = np.ndarray(dtype=np.uint8, shape=(w, h, c), strides=(c, w * c, 1))
assert a.shape == (w, h, c)
assert a.strides == (c, w * c, 1)
assert a.dtype == np.uint8
b = hl.Buffer(a)
assert b.type() == hl.UInt(8)
assert b.dim(0).min() == 0
assert b.dim(0).extent() == c
assert b.dim(0).stride() == 1
assert b.dim(1).min() == 0
assert b.dim(1).extent() == h
assert b.dim(1).stride() == w * c
assert b.dim(2).min() == 0
assert b.dim(2).extent() == w
assert b.dim(2).stride() == c
def test_reorder():
W = 7
H = 5
C = 3
Z = 2
a = hl.Buffer(type=hl.UInt(8), sizes=[W, H, C], storage_order=[2, 0, 1])
assert a.dim(0).extent() == W
assert a.dim(1).extent() == H
assert a.dim(2).extent() == C
assert a.dim(2).stride() == 1
assert a.dim(0).stride() == C
assert a.dim(1).stride() == W * C
b = hl.Buffer(hl.UInt(8), [W, H, C, Z], [2, 3, 0, 1])
assert b.dim(0).extent() == W
assert b.dim(1).extent() == H
assert b.dim(2).extent() == C
assert b.dim(3).extent() == Z
assert b.dim(2).stride() == 1
assert b.dim(3).stride() == C
assert b.dim(0).stride() == C * Z
assert b.dim(1).stride() == W * C * Z
b2 = hl.Buffer(hl.UInt(8), [C, Z, W, H])
assert b.dim(0).extent() == b2.dim(2).extent()
assert b.dim(1).extent() == b2.dim(3).extent()
assert b.dim(2).extent() == b2.dim(0).extent()
assert b.dim(3).extent() == b2.dim(1).extent()
assert b.dim(0).stride() == b2.dim(2).stride()
assert b.dim(1).stride() == b2.dim(3).stride()
assert b.dim(2).stride() == b2.dim(0).stride()
assert b.dim(3).stride() == b2.dim(1).stride()
b2.transpose([2, 3, 0, 1])
assert b.dim(0).extent() == b2.dim(0).extent()
assert b.dim(1).extent() == b2.dim(1).extent()
assert b.dim(2).extent() == b2.dim(2).extent()
assert b.dim(3).extent() == b2.dim(3).extent()
assert b.dim(0).stride() == b2.dim(0).stride()
assert b.dim(1).stride() == b2.dim(1).stride()
assert b.dim(2).stride() == b2.dim(2).stride()
assert b.dim(3).stride() == b2.dim(3).stride()
def test_overflow():
# Don't bother testing this on 32-bit systems (our "huge" size is too large there)
if not _is_64bits():
print("skipping test_overflow()")
return
# size = INT_MAX
w_intmax = 0x7FFFFFFF
# When size == INT_MAX, we should not emit error
size_intmax = np.ndarray(dtype=np.uint8, shape=(w_intmax))
hl.Buffer(size_intmax)
# size = INT_MAX + 1
w_over_intmax = 0x7FFFFFFF + 1
# We should emit the error when the size > INT_MAX
size_over_intmax = np.ndarray(dtype=np.uint8, shape=(w_over_intmax))
try:
hl.Buffer(size_over_intmax)
except ValueError as e:
assert "Out of range dimensions in buffer conversion" in str(e)
def test_buffer_to_str():
b = hl.Buffer()
assert str(b) == "<undefined halide.Buffer>"
b = hl.Buffer(hl.Int(32), [128, 256])
assert str(b) == "<halide.Buffer of type int32 shape:[[0,128,1],[0,256,128]]>"
def test_scalar_buffers():
buf = hl.Buffer.make_scalar(hl.Float(32))
assert buf.dimensions() == 0
buf.fill(0)
buf[()] = 2.5
assert buf[()] == 2.5
buf.fill(32)
assert buf[()] == 32
def test_oob():
buf = hl.Buffer(hl.Int(16), [4, 6])
buf.fill(0)
# getitem below min
try:
print(buf[-1, 2])
except IndexError as e:
assert "index -1 is out of bounds for axis 0 with min=0, extent=4" in str(e)
else:
assert False, "Did not see expected exception!"
# getitem above max
try:
print(buf[1, 6])
except IndexError as e:
assert "index 6 is out of bounds for axis 1 with min=0, extent=6" in str(e)
# setitem below min
try:
buf[-1, 2] = 42
except IndexError as e:
assert "index -1 is out of bounds for axis 0 with min=0, extent=4" in str(e)
else:
assert False, "Did not see expected exception!"
# setitem above max
try:
buf[1, 6] = 42
except IndexError as e:
assert "index 6 is out of bounds for axis 1 with min=0, extent=6" in str(e)
def test_cropped_buffer():
"""
Test that Buffer.cropped
- share an allocation as the original buffer
- can have an independent name set
- both overloads of `cropped` are available
"""
orig_min = 0
orig_extent = 10
data = np.arange(orig_min, orig_extent * orig_extent, dtype=np.int32).reshape(
(orig_extent, orig_extent)
)
new_min = 5
new_extent = orig_extent - new_min
subaxis = (new_min, new_extent)
# upper right block
subrect = [subaxis, subaxis]
orig_name = "buf"
new_name = "bc"
buf = hl.Buffer(data, orig_name)
bc0 = buf.cropped(subrect)
assert bc0.dim(0).min() == new_min, bc0.dim(0).min()
assert bc0.dim(0).extent() == new_extent, bc0.dim(0).extent()
assert bc0.dim(1).min() == new_min, bc0.dim(1).min()
assert bc0.dim(1).extent() == new_extent, bc0.dim(1).extent()
bc0.set_name(new_name)
assert buf.name() == orig_name
stop_d1 = bc0.dim(1).min() + bc0.dim(1).extent()
stop_d0 = bc0.dim(0).min() + bc0.dim(0).extent()
for row in range(bc0.dim(1).min(), stop_d1):
for col in range(bc0.dim(0).min(), stop_d0):
bc0[col, row] = -1
for row in range(new_min, new_extent):
for col in range(new_min, new_extent):
assert data[row, col] == -1, data[row, col]
# bottom left block
new_min = 0
new_extent = 5
new_val = -2
bc1 = buf.cropped(0, new_min, new_extent).cropped(1, new_min, new_extent)
assert bc1.dim(0).min() == new_min, bc1.dim(0).min()
assert bc1.dim(0).extent() == new_extent, bc1.dim(0).extent()
assert bc1.dim(1).min() == new_min, bc1.dim(1).min()
assert bc1.dim(1).extent() == new_extent, bc1.dim(1).extent()
stop_d1 = bc1.dim(1).min() + bc1.dim(1).extent()
stop_d0 = bc1.dim(0).min() + bc1.dim(0).extent()
for row in range(bc1.dim(1).min(), bc1.dim(1).extent()):
for col in range(bc1.dim(0).min(), bc1.dim(0).extent()):
bc1[col, row] = new_val
for row in range(new_min, new_min + new_extent):
for col in range(new_min, new_min + new_extent):
assert data[row, col] == new_val, data[row, col]
x, y = hl.vars("x y")
f = hl.Func("f")
f[x, y] = bc1[x, y] * 2
realized = f.realize([new_extent, new_extent])
for row in range(new_min, new_extent):
for col in range(new_min, new_extent):
assert realized[row, col] == new_val * 2
def test_translated_buffer():
"""
Test that Buffer.translated
- shares an allocation as the original buffer
- can have name independant from the original buffer
- both overloads of `translated` are available
"""
orig_name = "buf"
orig_min = 0
orig_extent = 10
def make_orig_buf():
return np.arange(orig_min, orig_extent * orig_extent, dtype=np.int32).reshape(
(orig_extent, orig_extent)
)
data = make_orig_buf()
buf = hl.Buffer(data, orig_name)
tag = -1
# the tranlation offset
dxs = [-3, 3]
for dx in dxs:
new_name = "bt0"
new_min = orig_min + dx
new_extent = orig_extent
# apply treatment
bt0 = buf.translated(0, dx).translated(1, dx)
bt0.set_name(new_name)
assert bt0.name() == new_name
assert buf.name() == orig_name
assert bt0.dim(0).min() == new_min, bt0.dim(0).min()
assert bt0.dim(0).extent() == new_extent, bt0.dim(0).extent()
assert bt0.dim(1).min() == new_min, bt0.dim(1).min()
assert bt0.dim(1).extent() == new_extent, bt0.dim(1).extent()
# shared buffer test
stop_d1 = bt0.dim(1).min() + bt0.dim(1).extent()
stop_d0 = bt0.dim(0).min() + bt0.dim(0).extent()
for row in range(bt0.dim(1).min(), stop_d1):
for col in range(bt0.dim(0).min(), stop_d0):
bt0[col, row] = tag
for row in range(orig_min, orig_extent):
for col in range(orig_min, orig_extent):
assert data[row, col] == tag, data[row, col]
# reset data
data = make_orig_buf()
buf = hl.Buffer(data, orig_name)
bt1 = buf.translated(dxs)
assert bt1.dim(0).min() == orig_min + dxs[0], bt1.dim(0).min()
assert bt1.dim(0).extent() == orig_extent, bt1.dim(0).extent()
assert bt1.dim(1).min() == orig_min + dxs[1], bt1.dim(1).min()
assert bt1.dim(1).extent() == orig_extent, bt1.dim(1).extent()
start_d1 = bt1.dim(1).min()
extent_d1 = bt1.dim(1).extent()
stop_d1 = start_d1 + extent_d1
start_d0 = bt1.dim(0).min()
extent_d0 = bt1.dim(0).extent()
stop_d0 = start_d0 + extent_d0
for row in range(start_d1, stop_d1):
for col in range(start_d0, stop_d0):
bt1[col, row] = tag
for row in range(orig_min, orig_extent):
for col in range(orig_min, orig_extent):
assert data[row, col] == tag, data[row, col]
x, y = hl.vars("x y")
f = hl.Func("f")
f[x, y] = bt1[x + dxs[0], y + dxs[1]] * 2
realized = f.realize([(extent_d0), (extent_d1)])
for row in range(0, extent_d1):
for col in range(0, extent_d0):
assert realized[row, col] == tag * 2
if __name__ == "__main__":
test_make_interleaved()
test_interleaved_ndarray()
test_ndarray_to_buffer(reverse_axes=True)
test_ndarray_to_buffer(reverse_axes=False)
test_buffer_to_ndarray(reverse_axes=True)
test_buffer_to_ndarray(reverse_axes=False)
test_for_each_element()
test_fill_all_equal()
test_bufferinfo_sharing()
# TODO: https://github.com/halide/Halide/issues/6849
# test_bfloat16()
test_float16()
test_int64()
test_reorder()
test_overflow()
test_buffer_to_str()
test_scalar_buffers()
test_oob()
test_cropped_buffer()
test_translated_buffer()
|