1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#!/usr/bin/python3
# Halide tutorial lesson 12.
# This lesson demonstrates how to use Halide to run code on a GPU.
# This lesson can be built by invoking the command:
# make test_tutorial_lesson_12_using_the_gpu
# in a shell with the current directory at python_bindings/
import halide as hl
import halide.imageio
import os.path
import struct
# Include a clock to do performance testing.
from datetime import datetime
# Define some Vars to use.
x, y, c, i, xo, yo, xi, yi = hl.vars("x y c i xo yo xi yi")
# We're going to want to schedule a pipeline in several ways, so we
# define the pipeline in a class so that we can recreate it several
# times with different schedules.
class MyPipeline:
def __init__(self, input):
assert input.type() == hl.UInt(8)
self.lut = hl.Func("lut")
self.padded = hl.Func("padded")
self.padded16 = hl.Func("padded16")
self.sharpen = hl.Func("sharpen")
self.curved = hl.Func("curved")
self.input = input
# For this lesson, we'll use a two-stage pipeline that sharpens
# and then applies a look-up-table (LUT).
# First we'll define the LUT. It will be a gamma curve.
gamma = hl.f32(1.2)
self.lut[i] = hl.u8(hl.clamp(hl.pow(i / 255.0, gamma) * 255.0, 0, 255))
# Augment the input with a boundary condition.
self.padded[x, y, c] = input[
hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), c
]
# Cast it to 16-bit to do the math.
self.padded16[x, y, c] = hl.u16(self.padded[x, y, c])
# Next we sharpen it with a five-tap filter.
self.sharpen[x, y, c] = (
self.padded16[x, y, c] * 2
- (
self.padded16[x - 1, y, c]
+ self.padded16[x, y - 1, c]
+ self.padded16[x + 1, y, c]
+ self.padded16[x, y + 1, c]
)
/ 4
)
# Then apply the LUT.
self.curved[x, y, c] = self.lut[self.sharpen[x, y, c]]
# Now we define methods that give our pipeline several different
# schedules.
def schedule_for_cpu(self):
# Compute the look-up-table ahead of time.
self.lut.compute_root()
# Compute color channels innermost. Promise that there will
# be three of them and unroll across them.
self.curved.reorder(c, x, y).bound(c, 0, 3).unroll(c)
# Look-up-tables don't vectorize well, so just parallelize
# curved in slices of 16 scanlines.
self.curved.split(y, yo, yi, 16).parallel(yo)
# Compute sharpen as needed per scanline of curved, reusing
# previous values computed within the same strip of 16
# scanlines.
self.sharpen.compute_at(self.curved, yi)
# Vectorize the sharpen. It's 16-bit so we'll vectorize it 8-wide.
self.sharpen.vectorize(x, 8)
# Compute the padded input at the same granularity as the
# sharpen. We'll leave the cast to 16-bit inlined into
# sharpen.
self.padded.store_at(self.curved, yo).compute_at(self.curved, yi)
# Also vectorize the padding. It's 8-bit, so we'll vectorize
# 16-wide.
self.padded.vectorize(x, 16)
# JIT-compile the pipeline for the CPU.
target = hl.get_host_target()
self.curved.compile_jit(target)
return
# Now a schedule that uses CUDA or OpenCL.
def schedule_for_gpu(self):
target = find_gpu_target()
if not target.has_gpu_feature():
return False
# If you want to see all of the OpenCL, Metal, CUDA or D3D 12 API
# calls done by the pipeline, you can also enable the Debug flag.
# This is helpful for figuring out which stages are slow, or when
# CPU -> GPU copies happen. It hurts performance though, so we'll
# leave it commented out.
# target.set_feature(hl.TargetFeature.Debug)
# We make the decision about whether to use the GPU for each
# hl.Func independently. If you have one hl.Func computed on the
# CPU, and the next computed on the GPU, Halide will do the
# copy-to-gpu under the hood. For this pipeline, there's no
# reason to use the CPU for any of the stages. Halide will
# copy the input image to the GPU the first time we run the
# pipeline, and leave it there to reuse on subsequent runs.
# As before, we'll compute the LUT once at the start of the
# pipeline.
self.lut.compute_root()
# Let's compute the look-up-table using the GPU in 16-wide
# one-dimensional thread blocks. First we split the index
# into blocks of size 16:
block, thread = hl.Var("block"), hl.Var("thread")
self.lut.split(i, block, thread, 16)
# Then we tell cuda that our Vars 'block' and 'thread'
# correspond to CUDA's notions of blocks and threads, or
# OpenCL's notions of thread groups and threads.
self.lut.gpu_blocks(block).gpu_threads(thread)
# This is a very common scheduling pattern on the GPU, so
# there's a shorthand for it:
# lut.gpu_tile(i, block, thread, 16);
# hl.Func.gpu_tile behaves the same as hl.Func.tile, except that
# it also specifies that the tile coordinates correspond to
# GPU blocks, and the coordinates within each tile correspond
# to GPU threads.
# Compute color channels innermost. Promise that there will
# be three of them and unroll across them.
self.curved.reorder(c, x, y).bound(c, 0, 3).unroll(c)
# Compute curved in 2D 8x8 tiles using the GPU.
self.curved.gpu_tile(x, y, xo, yo, xi, yi, 8, 8)
# This is equivalent to:
# curved.tile(x, y, xo, yo, xi, yi, 8, 8)
# .gpu_blocks(xo, yo)
# .gpu_threads(xi, yi)
# We'll leave sharpen as inlined into curved.
# Compute the padded input as needed per GPU block, storing
# the intermediate result in shared memory. In the schedule
# above xo corresponds to GPU blocks.
self.padded.compute_at(self.curved, xo)
# Use the GPU threads for the x and y coordinates of the
# padded input.
self.padded.gpu_threads(x, y)
# JIT-compile the pipeline for the GPU. CUDA, OpenCL, or
# Metal are not enabled by default. We have to construct a
# Target object, enable one of them, and then pass that
# target object to compile_jit. Otherwise your CPU will very
# slowly pretend it's a GPU, and use one thread per output
# pixel.
print("Target: ", target)
self.curved.compile_jit(target)
return True
def test_performance(self):
# Test the performance of the scheduled MyPipeline.
output = hl.Buffer(
hl.UInt(8), [self.input.width(), self.input.height(), self.input.channels()]
)
# Run the filter once to initialize any GPU runtime state.
self.curved.realize(output)
# Now take the best of 3 runs for timing.
best_time = float("inf")
for i in range(3):
t1 = datetime.now()
# Run the filter 100 times.
for j in range(100):
self.curved.realize(output)
# Force any GPU code to finish by copying the buffer back to the
# CPU.
output.copy_to_host()
t2 = datetime.now()
elapsed = (t2 - t1).total_seconds()
if elapsed < best_time:
best_time = elapsed
# end of "best of three times"
print("%1.4f milliseconds" % (best_time * 1000))
def test_correctness(self, reference_output):
assert reference_output.type() == hl.UInt(8)
output = self.curved.realize(
[self.input.width(), self.input.height(), self.input.channels()]
)
assert output.type() == hl.UInt(8)
# Check against the reference output.
for cc in range(self.input.channels()):
for yy in range(self.input.height()):
for xx in range(self.input.width()):
assert output[xx, yy, cc] == reference_output[xx, yy, cc], (
f"Mismatch between output ({output[xx, yy, cc]}) and reference output "
f"({reference_output[xx, yy, cc]}) at {xx}, {yy}, {cc}"
)
print("CPU and GPU outputs are consistent.")
def main():
# Load an input image.
image_path = os.path.join(
os.path.dirname(__file__), "../../tutorial/images/rgb.png"
)
input = hl.Buffer(halide.imageio.imread(image_path))
# Allocated an image that will store the correct output
reference_output = hl.Buffer(
hl.UInt(8), [input.width(), input.height(), input.channels()]
)
print("Running pipeline on CPU:")
p1 = MyPipeline(input)
p1.schedule_for_cpu()
p1.curved.realize(reference_output)
print("Running pipeline on GPU:")
p2 = MyPipeline(input)
has_gpu_target = p2.schedule_for_gpu()
if has_gpu_target:
print("Testing GPU correctness:")
p2.test_correctness(reference_output)
else:
print("No GPU target available on the host")
print("Testing performance on CPU:")
p1.test_performance()
if has_gpu_target:
print("Testing performance on GPU:")
p2.test_performance()
return 0
# A helper function to check if OpenCL, Metal or D3D12 is present on the
# host machine.
def find_gpu_target():
# Start with a target suitable for the machine you're running this on.
target = hl.get_host_target()
features_to_try = []
if target.os == hl.TargetOS.Windows:
# Try D3D12 first; if that fails, try OpenCL.
if struct.calcsize("P") == 8:
# D3D12Compute support is only available on 64-bit systems at present.
features_to_try.append(hl.TargetFeature.D3D12Compute)
features_to_try.append(hl.TargetFeature.OpenCL)
elif target.os == hl.TargetOS.OSX:
# OS X doesn't update its OpenCL drivers, so they tend to be broken.
# CUDA would also be a fine choice on machines with NVidia GPUs.
features_to_try.append(hl.TargetFeature.Metal)
else:
features_to_try.append(hl.TargetFeature.OpenCL)
# Uncomment the following lines to also try CUDA:
# features_to_try.append(hl.TargetFeature.CUDA);
for f in features_to_try:
new_target = target.with_feature(f)
if hl.host_supports_target_device(new_target):
return new_target
print(
"Requested GPU(s) are not supported. (Do you have the proper hardware and/or driver installed?)"
)
return target
if __name__ == "__main__":
main()
|