1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
#include "Halide.h"
using namespace Halide;
int (*cuStreamCreate)(void **, uint32_t) = nullptr;
int (*cuCtxCreate)(void **, uint32_t, int) = nullptr;
int (*cuCtxDestroy)(void *) = nullptr;
int (*cuMemAlloc)(void **, size_t) = nullptr;
int (*cuMemFree)(void *) = nullptr;
int (*cuCtxSetCurrent)(void *) = nullptr;
struct CudaState : public Halide::JITUserContext {
void *cuda_context = nullptr, *cuda_stream = nullptr;
std::atomic<int> acquires = 0, releases = 0;
static int my_cuda_acquire_context(JITUserContext *ctx, void **cuda_ctx, bool create) {
CudaState *state = (CudaState *)ctx;
*cuda_ctx = state->cuda_context;
state->acquires++;
return 0;
}
static int my_cuda_release_context(JITUserContext *ctx) {
CudaState *state = (CudaState *)ctx;
state->releases++;
return 0;
}
static int my_cuda_get_stream(JITUserContext *ctx, void *cuda_ctx, void **stream) {
CudaState *state = (CudaState *)ctx;
*stream = state->cuda_stream;
return 0;
}
CudaState() {
handlers.custom_cuda_acquire_context = my_cuda_acquire_context;
handlers.custom_cuda_release_context = my_cuda_release_context;
handlers.custom_cuda_get_stream = my_cuda_get_stream;
}
};
int main(int argc, char **argv) {
Target target = get_jit_target_from_environment();
if (!target.has_feature(Target::CUDA)) {
printf("[SKIP] CUDA not enabled.\n");
return 0;
}
if (target.get_cuda_capability_lower_bound() < 61) {
printf("[SKIP] Not running test on buildbot with very old GPU, as it fails for"
" unknown reasons that we will probably never diagnose.\n");
return 0;
}
{
// Do some nonsense to get symbols out of libcuda without
// needing the CUDA sdk. This would not be a concern in a real
// cuda-using application but is helpful for our
// build-and-test infrastructure.
// We'll find cuda module in the Halide runtime so
// that we can use it resolve symbols into libcuda in a
// portable way.
// Force-initialize the cuda runtime module by running something trivial.
evaluate_may_gpu<float>(Expr(0.f));
// Go get it, and dig out the method used to resolve symbols in libcuda.
auto runtime_modules = Internal::JITSharedRuntime::get(nullptr, target, false);
void *(*halide_cuda_get_symbol)(void *, const char *) = nullptr;
for (Internal::JITModule &m : runtime_modules) {
// Just rifle through all the runtime modules for this
// target until we find the method we want.
auto sym = m.find_symbol_by_name("halide_cuda_get_symbol");
if (sym.address != nullptr) {
halide_cuda_get_symbol = (decltype(halide_cuda_get_symbol))sym.address;
break;
}
}
if (halide_cuda_get_symbol == nullptr) {
printf("Failed to extract halide_cuda_get_symbol from Halide cuda runtime\n");
return 1;
}
// Go get the CUDA API functions we actually intend to use.
cuStreamCreate = (decltype(cuStreamCreate))halide_cuda_get_symbol(nullptr, "cuStreamCreate");
cuCtxCreate = (decltype(cuCtxCreate))halide_cuda_get_symbol(nullptr, "cuCtxCreate_v2");
cuCtxDestroy = (decltype(cuCtxDestroy))halide_cuda_get_symbol(nullptr, "cuCtxDestroy_v2");
cuCtxSetCurrent = (decltype(cuCtxSetCurrent))halide_cuda_get_symbol(nullptr, "cuCtxSetCurrent");
cuMemAlloc = (decltype(cuMemAlloc))halide_cuda_get_symbol(nullptr, "cuMemAlloc_v2");
cuMemFree = (decltype(cuMemFree))halide_cuda_get_symbol(nullptr, "cuMemFree_v2");
if (cuStreamCreate == nullptr ||
cuCtxCreate == nullptr ||
cuCtxDestroy == nullptr ||
cuCtxSetCurrent == nullptr ||
cuMemAlloc == nullptr ||
cuMemFree == nullptr) {
printf("Failed to find cuda API\n");
return 1;
}
}
// Make a cuda context and stream.
CudaState state;
int err = cuCtxCreate(&state.cuda_context, 0, 0);
if (state.cuda_context == nullptr) {
printf("Failed to initialize context: %d\n", err);
return 1;
}
err = cuCtxSetCurrent(state.cuda_context);
if (err) {
printf("Failed to set context: %d\n", err);
return 1;
}
err = cuStreamCreate(&state.cuda_stream, 1 /* non-blocking */);
if (state.cuda_stream == nullptr) {
printf("Failed to initialize stream: %d\n", err);
return 1;
}
// Allocate some GPU memory on this context
const int width = 32, height = 1024;
void *ptr = nullptr;
err = cuMemAlloc(&ptr, width * height * sizeof(float));
if (ptr == nullptr) {
printf("cuMemAlloc failed: %d\n", err);
return 1;
}
// Wrap a Halide buffer around it, with some host memory too.
Buffer<float> in(width, height);
in.fill(4.0f);
auto device_interface = get_device_interface_for_device_api(DeviceAPI::CUDA);
in.device_wrap_native(device_interface,
(uintptr_t)ptr, &state);
in.copy_to_device(device_interface, &state);
// Run a kernel on multiple threads that copies slices of it into
// a Halide-allocated temporary buffer. This would likely crash
// if we don't allocate the outputs on the right context. If the
// copies don't happen on the same stream as the compute, we'll
// get incorrect outputs due to race conditions.
Func f, g;
Var x, xi, y;
f(x, y) = sqrt(in(x, y));
g(x, y) = f(x, y);
f.gpu_tile(x, x, xi, 32).compute_at(g, y);
g.parallel(y);
for (int i = 0; i < 10; i++) {
Buffer<float> out = g.realize(&state, {width, height});
out.copy_to_host(&state);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
float correct = 2.0f;
if (out(x, y) != 2.0f) {
printf("out(%d, %d) = %f instead of %f\n", x, y, out(x, y), correct);
return 1;
}
}
}
}
// Clean up
in.device_detach_native(&state);
cuMemFree(ptr);
cuCtxDestroy(state.cuda_stream);
if (state.acquires.load() != state.releases.load() ||
state.acquires.load() < height) {
printf("Context acquires: %d releases: %d\n", state.acquires.load(), state.releases.load());
printf("Expected these to match and be at least %d (the number of parallel tasks)\n", height);
return 1;
}
printf("Success!\n");
return 0;
}
|