1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#include "Halide.h"
using namespace Halide;
using namespace Halide::Internal;
class CheckLoopLevels : public IRVisitor {
public:
CheckLoopLevels(const std::string &inner_loop_level,
const std::string &outer_loop_level)
: inner_loop_level(inner_loop_level), outer_loop_level(outer_loop_level) {
}
private:
using IRVisitor::visit;
const std::string inner_loop_level, outer_loop_level;
std::string inside_for_loop;
void visit(const For *op) override {
std::string old_for_loop = inside_for_loop;
inside_for_loop = op->name;
IRVisitor::visit(op);
inside_for_loop = old_for_loop;
}
void visit(const Call *op) override {
IRVisitor::visit(op);
if (op->name == "sin_f32") {
_halide_user_assert(starts_with(inside_for_loop, inner_loop_level));
} else if (op->name == "cos_f32") {
_halide_user_assert(starts_with(inside_for_loop, outer_loop_level));
}
}
void visit(const Store *op) override {
IRVisitor::visit(op);
if (op->name.substr(0, 5) == "inner") {
_halide_user_assert(starts_with(inside_for_loop, inner_loop_level));
} else if (op->name.substr(0, 5) == "outer") {
_halide_user_assert(starts_with(inside_for_loop, outer_loop_level));
} else {
_halide_user_assert(0);
}
}
};
Var x("x"), y("y"), c("c");
struct Test {
Func inner, outer;
LoopLevel inner_compute_at, inner_store_at;
explicit Test(int i) {
// We use specific calls as proxies for verifying that compute_at
// happens where we expect: sin() for the inner function, cos()
// for the outer one; these are chosen mainly because they won't
// ever get generated incidentally by the lowering code as part of
// general code structure.
inner = Func("inner" + std::to_string(i));
inner(x, y, c) = sin(cast<float>(x + y + c));
inner.compute_at(inner_compute_at).store_at(inner_store_at);
outer = Func("outer" + std::to_string(i));
outer(x, y, c) = cos(cast<float>(inner(x, y, c)));
}
void check(const std::string &inner_loop_level,
const std::string &outer_loop_level) {
Buffer<float> result = outer.realize({1, 1, 1});
Module m = outer.compile_to_module({outer.infer_arguments()});
CheckLoopLevels c(inner_loop_level, outer_loop_level);
m.functions().front().body.accept(&c);
}
};
int main(int argc, char **argv) {
// Test that LoopLevels set after being specified still take effect.
{
Test t(1);
t.inner_compute_at.set(LoopLevel(t.outer, x));
t.inner_store_at.set(LoopLevel(t.outer, x));
t.check("outer1.s0.x", "outer1.s0.x");
}
// Same as before, but using inlined() for both inner LoopLevels.
{
Test t(2);
t.inner_compute_at.set(LoopLevel::inlined());
t.inner_store_at.set(LoopLevel::inlined());
t.check("outer2.s0.x", "outer2.s0.x");
}
// Same as before, but using root() for both inner LoopLevels.
{
Test t(3);
t.inner_compute_at.set(LoopLevel::root());
t.inner_store_at.set(LoopLevel::root());
t.check("inner3.s0.x", "outer3.s0.x");
}
// Same as before, but using different store_at and compute_at()
{
Test t(4);
t.inner_compute_at.set(LoopLevel(t.outer, y));
t.inner_store_at.set(LoopLevel::root());
t.check("inner4.s0.x", "outer4.s0.x");
}
// Same as before, but using inlined for store_at() [equivalent to omitting
// the store_at() call entirely] and non-inlined for compute_at
{
Test t(5);
t.inner_compute_at.set(LoopLevel(t.outer, y));
t.inner_store_at.set(LoopLevel::inlined());
t.check("inner5.s0.x", "outer5.s0.x");
}
printf("Success!\n");
return 0;
}
|