1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
#include "Halide.h"
using namespace Halide;
int main(int argc, char **argv) {
Target t(get_jit_target_from_environment());
if (!t.has_gpu_feature()) {
printf("[SKIP] No GPU target enabled.\n");
return 0;
}
Func f1, f2, f3, f4, f5, f6, g;
Var x, y;
Param<int> p;
f1(x, y) = cast<float>(x + y);
f2(x, y) = cast<int>(f1(x, y) + f1(x + 1, y + 1));
f3(x, y) = cast<float>(f2(x, y) + f2(x + 1, y + 1));
f4(x, y) = cast<int>(f3(x, y) + f3(x + 1, y + 1));
f5(x, y) = cast<int>(f4(x, y) + f4(x + 1, y + 1));
f6(x, y) = cast<float>(f5(x, y) + f5(x + 1, y + 1));
g(x, y) = f6(x, y) + f6(x + p, y + p);
// All of the f's have a dynamic size required (it depends on p),
// so we'll store them in global memory ("Heap"). On cuda we get
// one big heap allocation. On d3d we should get one
// allocation per coalesced group, and groups can only be
// coalesced if the types match, so we get an allocation for
// [f1,f3,f6], another for [f2,f4], and a third for f5.
Var xi, yi;
g.gpu_tile(x, y, xi, yi, 16, 8);
f1.compute_at(g, x).store_in(MemoryType::Heap);
f2.compute_at(g, x).store_in(MemoryType::Heap);
f3.compute_at(g, x).store_in(MemoryType::Heap);
f4.compute_at(g, x).store_in(MemoryType::Heap);
f5.compute_at(g, x).store_in(MemoryType::Heap);
f6.compute_at(g, xi);
constexpr int W = 128, H = 128;
for (int i = 0; i < 10; i++) {
p.set(i);
Buffer<float> result = g.realize({W, H});
result.copy_to_host();
for (int y = 0; y < H; y++) {
for (int x = 0; x < W; x++) {
float correct = 64 * x + 64 * y + 64 * i + 320;
float actual = result(x, y);
if (correct != actual) {
printf("result[%d](%d, %d) = %f instead of %f\n",
i, x, y, actual, correct);
return 1;
}
}
}
}
printf("Success!\n");
return 0;
}
|