File: float16_t.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (437 lines) | stat: -rw-r--r-- 15,687 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#include "Halide.h"

#include <limits>

#if defined(__linux__) && defined(__clang__)
// If LLVM was built with an older GCC but Halide is built with Clang,
// we may be missing this symbol needed for float16 conversion.
// Just insert a weak definition here as a workaround.
extern "C" {

#if __clang_major__ >= 15 && defined(__x86_64__)

// In Clang 15 and later, this function is passed a uint16... but in the xmm0 register on x86-64.
// So we'll declare it as a float and just grab the upper 16 bits.
__attribute__((weak, visibility("default"))) float __extendhfsf2(float actually_a_float16) {
    uint16_t data;
    memcpy(&data, &actually_a_float16, sizeof(data));
    return (float)Halide::float16_t::make_from_bits(data);
}

#else

__attribute__((weak, visibility("default"))) float __extendhfsf2(uint16_t data) {
    return (float)Halide::float16_t::make_from_bits(data);
}

#endif

}  // extern "C"
#endif

namespace {

using namespace Halide;

bool check_infinity_case(bool use_first, float16_t value, const char *value_name,
                         int increment, float16_t expected_first, float16_t expected_second,
                         const char *first_name, const char *second_name) {
    if (value != (use_first ? expected_first : expected_second)) {
        printf("%s %d is %x, not %s.\n", value_name, increment, value.to_bits(),
               (use_first ? first_name : second_name));
        return false;
    }
    return true;
}

class MyCustomErrorReporter : public CompileTimeErrorReporter {
public:
    MyCustomErrorReporter() = default;

    void warning(const char *msg) override {
        // Just ignore them, they are probably warnings about emulated float16, which we don't care about here
    }

    void error(const char *msg) override {
        fprintf(stderr, "Error: %s\n", msg);
        exit(1);
    }
};

template<typename FP16>
int run_test() {
    Var x;

    Buffer<float16_t> in1 = lambda(x, cast<float16_t>(-0.5f) + cast<float16_t>(x) / (128)).realize({128});
    Buffer<bfloat16_t> in2 = lambda(x, cast<bfloat16_t>(-0.5f) + cast<bfloat16_t>(x) / (128)).realize({128});

    // Check the Halide-side float 16 conversion math matches the C++-side math.
    in1.for_each_element([&](int i) {
        float16_t correct = Halide::float16_t(-0.5f) + Halide::float16_t(i) / Halide::float16_t(128.0f);
        if (in1(i) != correct) {
            fprintf(stderr, "in1(%d) = %f instead of %f\n", i, float(in2(i)), float(correct));
            exit(1);
        }
    });

    in2.for_each_element([&](int i) {
        bfloat16_t correct = Halide::bfloat16_t(-0.5f) + Halide::bfloat16_t(i) / Halide::bfloat16_t(128.0f);
        if (in2(i) != correct) {
            fprintf(stderr, "in2(%d) = %f instead of %f\n", i, float(in2(i)), float(correct));
            exit(1);
        }
    });

    // Check some basic math works on float16. More math is tested in
    // correctness_vector_math.
    Func wrap1, wrap2;
    wrap1(x) = in1(x);
    wrap2(x) = in2(x);

    Func f;
    f(x) = abs(sqrt(abs(wrap1(x) * 4.0f)) - sqrt(abs(wrap2(x))) * 2.0f);

    f.compute_root().vectorize(x, 16);
    wrap1.compute_at(f, x).vectorize(x);
    wrap2.compute_at(f, x).vectorize(x);

    RDom r(0, 128);
    Func g;
    g() = maximum(cast<double>(f(r)));

    double d = evaluate<double>(g());
    if (d != 0) {
        fprintf(stderr, "Should be zero: %f\n", d);
        return 1;
    }

    // Check scalar parameters
    {
        Param<float16_t> a;
        Param<bfloat16_t> b;
        a.set(float16_t(1.5f));
        b.set(bfloat16_t(2.75f));
        float result = evaluate<float>(cast<float>(a) + cast<float>(b));
        if (result != 4.25f) {
            fprintf(stderr, "Incorrect result: %f != 4.25f\n", result);
            return 1;
        }
    }

    // Check scalar parameters work using a problematic case
    {
        Param<float16_t> a, b, c;
        a.set(float16_t(24.062500f));
        b.set(float16_t(30.187500f));
        c.set(float16_t(0));
        float16_t result = evaluate<float16_t>(lerp(a, b, c));
        if (float(result) != 24.062500f) {
            fprintf(stderr, "Incorrect result: %f != 24.0625f\n", (float)result);
            return 1;
        }
    }

    {
        Param<bfloat16_t> a, b, c;
        a.set(bfloat16_t(24.5f));
        b.set(bfloat16_t(30.5f));
        c.set(bfloat16_t(0));
        bfloat16_t result = evaluate<bfloat16_t>(lerp(a, b, c));
        if (float(result) != 24.5f) {
            fprintf(stderr, "Incorrect result: %f != 24.5f\n", (float)result);
            return 1;
        }
    }

    // Check that ties round towards a zero last bit on narrowing conversions
    {
        bfloat16_t start = bfloat16_t(37.2789f);
        for (uint16_t x = 0; x < 8; x++) {
            bfloat16_t a = bfloat16_t::make_from_bits(start.to_bits() + x);
            bfloat16_t b = bfloat16_t::make_from_bits(start.to_bits() + x + 1);
            bfloat16_t ab = bfloat16_t(((float)a + (float)b) / 2);

            if (a > ab || ab > b) {
                fprintf(stderr, "Misordered: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
            }

            bool ok = (((a.to_bits() & 1) && (ab == b)) ||
                       ((b.to_bits() & 1) && (ab == a)));

            if (!ok) {
                fprintf(stderr, "Incorrect rounding: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
                return 1;
            }
        }
    }

    // Check that ties round towards a zero last bit on narrowing conversions
    {
        float16_t start = float16_t(37.2789f);
        for (uint16_t x = 0; x < 8; x++) {
            float16_t a = float16_t::make_from_bits(start.to_bits() + x);
            float16_t b = float16_t::make_from_bits(start.to_bits() + x + 1);
            float16_t ab = float16_t(((float)a + (float)b) / 2);

            if (a > ab || ab > b) {
                fprintf(stderr, "Misordered: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
            }

            bool ok = (((a.to_bits() & 1) && (ab == b)) ||
                       ((b.to_bits() & 1) && (ab == a)));

            if (!ok) {
                fprintf(stderr, "Incorrect rounding: %x %x %x\n", a.to_bits(), ab.to_bits(), b.to_bits());
                return 1;
            }
        }
    }

    // Check rounding intrinsics
    {
        Func noise;
        Var x;
        noise(x) = (random_int() % 256) * 0.1f;
        noise.compute_root();
        Func trunc_f32 = lambda(x, trunc(noise(x)));
        Func round_f32 = lambda(x, round(noise(x)));
        Func ceil_f32 = lambda(x, ceil(noise(x)));
        Func floor_f32 = lambda(x, floor(noise(x)));
        Func trunc_f16 = lambda(x, trunc(cast<float16_t>(noise(x))));
        Func round_f16 = lambda(x, round(cast<float16_t>(noise(x))));
        Func ceil_f16 = lambda(x, ceil(cast<float16_t>(noise(x))));
        Func floor_f16 = lambda(x, floor(cast<float16_t>(noise(x))));

        std::vector<Func> funcs = {trunc_f32, round_f32, ceil_f32, floor_f32,
                                   trunc_f16, round_f16, ceil_f16, floor_f16};

        for (auto f : funcs) {
            f.compute_root().vectorize(x, 16);
        }

        const char *names[] = {"trunc", "round", "ceil", "floor"};

        Pipeline p(funcs);
        Realization r = p.realize({1024});
        for (int i = 0; i < 1024; i++) {
            for (int j = 0; j < 4; j++) {
                float f32 = Buffer<float>(r[j])(i);
                float f16 = float(Buffer<float16_t>(r[j + 4])(i));
                if (f32 != f16) {
                    fprintf(stderr, "%s outputs do not match: %f %f\n",
                            names[j], f32, f16);
                    return 1;
                }
            }
        }
    }

    // Check non-real-number values (requires strict_float)
    {
        Func f;
        Var x;
        Param<float16_t> a, b, c, d;
        a.set(float16_t::make_nan());
        b.set(float16_t::make_infinity());
        c.set(float16_t::make_negative_infinity());
        d.set(float16_t::make_zero());
        f(x) = mux(x, {is_nan(a), is_inf(a), is_finite(a),
                       is_nan(b), is_inf(b), is_finite(b),
                       is_nan(c), is_inf(c), is_finite(c),
                       is_nan(d), is_inf(d), is_finite(d)});
        f.compute_root().bound(x, 0, 12).unroll(x);

        bool expected[12] = {
            true, false, false,
            false, true, false,
            false, true, false,
            false, false, true};

        Buffer<bool> result = f.realize({12}, get_jit_target_from_environment().with_feature(Target::StrictFloat));

        for (int i = 0; i < 12; i++) {
            if (result(i) != expected[i]) {
                fprintf(stderr, "Result %d is %d instead of %d\n", i, result(i), expected[i]);
                return 1;
            }
        }
    }

    Target target = get_jit_target_from_environment();
    if (target.has_feature(Target::CUDA) ||
        target.has_feature(Target::Metal)) {
        // Check we can pass a float16 to a GPU kernel. Skip OpenCL
        // because support is spotty.
        Var x, y;
        ImageParam input(Float(16), 2);
        Param<float16_t> mul("mul");

        Func output;
        output(x, y) = x * y * (sqrt(input(x, y)) * mul);

        Var xi, yi;
        output.gpu_tile(x, y, xi, yi, 8, 8);

        mul.set(float16_t(2.0f));
        Buffer<float16_t> in(8, 8);
        in.fill(float16_t(0.0625f));
        input.set(in);
        Buffer<float16_t> buf = output.realize({8, 8});
        for (int y = 0; y < 8; y++) {
            for (int x = 0; x < 8; x++) {
                float16_t correct = float16_t((x * y) / 2.0f);
                if (buf(x, y).to_bits() != correct.to_bits()) {
                    fprintf(stderr, "buf(%d, %d) = 0x%x instead of 0x%x\n",
                            x, y, buf(x, y).to_bits(), correct.to_bits());
                    return 1;
                }
            }
        }
    }

    {
        // Check constants are emitted correctly
        Func out;
        float16_t constant(100.0f);
        out() = constant;
        Buffer<float16_t> buf = out.realize();
        if (buf(0) != constant) {
            fprintf(stderr, "buf(0) = %f instead of %f\n", float(buf(0)), float(constant));
            return 1;
        }
    }

    // Enable to read assembly generated by the conversion routines
    if ((false)) {  // Intentional dead code. Extra parens to pacify clang-tidy.
        Func src, to_f16, from_f16;

        src(x) = cast<float>(x);
        to_f16(x) = cast<float16_t>(src(x));
        from_f16(x) = cast<float>(to_f16(x));

        src.compute_root().vectorize(x, 8, TailStrategy::RoundUp);
        to_f16.compute_root().vectorize(x, 8, TailStrategy::RoundUp);
        from_f16.compute_root().vectorize(x, 8, TailStrategy::RoundUp);

        from_f16.compile_to_assembly("/dev/stdout", {}, Target("host-no_asserts-no_bounds_query-no_runtime-disable_llvm_loop_unroll-disable_llvm_loop_vectorize"));
    }

    // Check infinity handling for both float16_t and Halide codegen.
    {
        std::pair<int, bool> test_cases[] =
            {{1, false}, {16, true}, {256, true}};

        for (const auto &test_case : test_cases) {
            float16_t max_pos_val = float16_t::make_from_bits(0x7bff);
            float16_t min_neg_val = float16_t::make_from_bits(0xfbff);
            float16_t increment(test_case.first);

            float16_t max_plus_increment(max_pos_val + increment);
            if (!check_infinity_case(test_case.second, max_plus_increment,
                                     "float16_t maximum value plus", test_case.first,
                                     float16_t::make_infinity(), max_pos_val,
                                     "positive infinity", "maximum positive value")) {
                return 1;
            }

            float16_t min_minus_increment(min_neg_val - increment);
            if (!check_infinity_case(test_case.second, min_minus_increment,
                                     "float16_t minimum value minus", test_case.first,
                                     float16_t::make_negative_infinity(), min_neg_val,
                                     "negative infinity", "maximum negative value")) {
                return 1;
            }

            Param<float16_t> a("a"), b("b");
            a.set(max_pos_val);
            b.set(increment);
            float16_t c = evaluate<float16_t>(a + b);
            if (!check_infinity_case(test_case.second, c,
                                     "Halide float16_t maximum value plus", test_case.first,
                                     float16_t::make_infinity(), max_pos_val,
                                     "positive infinity", "maximum positive value")) {
                return 1;
            }

            a.set(min_neg_val);
            c = evaluate<float16_t>(a - b);
            if (!check_infinity_case(test_case.second, c,
                                     "Halide float16_t minimum value minus", test_case.first,
                                     float16_t::make_negative_infinity(), min_neg_val,
                                     "negative infinity", "maximum negative value")) {
                return 1;
            }

            float pos_inf = std::numeric_limits<float>::infinity();
            float16_t fp16_pos_inf(pos_inf);
            if (fp16_pos_inf != float16_t::make_infinity()) {
                fprintf(stderr, "Conversion of 32-bit positive infinity to 16-bit float is %x, not positive infinity.\n", fp16_pos_inf.to_bits());
                return 1;
            }

            float neg_inf = -std::numeric_limits<float>::infinity();
            float16_t fp16_neg_inf(neg_inf);
            if (fp16_neg_inf != float16_t::make_negative_infinity()) {
                fprintf(stderr, "Conversion of 32-bit negative infinity to 16-bit float is %x, not negative infinity.\n", fp16_neg_inf.to_bits());
                return 1;
            }

            Param<float> f_in("f_in");
            f_in.set(pos_inf);
            c = evaluate<float16_t>(cast(Float(16), f_in));
            if (c != float16_t::make_infinity()) {
                fprintf(stderr, "Halide conversion of 32-bit positive infinity to 16-bit float is %x, not positive infinity.\n", c.to_bits());
                return 1;
            }

            f_in.set(neg_inf);
            c = evaluate<float16_t>(cast(Float(16), f_in));
            if (c != float16_t::make_negative_infinity()) {
                fprintf(stderr, "Halide conversion of 32-bit negative infinity to 16-bit float is %x, not negative infinity.\n", c.to_bits());
                return 1;
            }
        }
    }

    return 0;
}

}  // namespace

int main(int argc, char **argv) {
    MyCustomErrorReporter reporter;
    set_custom_compile_time_error_reporter(&reporter);

    printf("Testing float16_t...\n");
    if (run_test<float16_t>() != 0) {
        fprintf(stderr, "float16_t test failed!\n");
        return 1;
    }

    printf("Testing _Float16...\n");
#ifdef HALIDE_CPP_COMPILER_HAS_FLOAT16
    if (run_test<_Float16>() != 0) {
        fprintf(stderr, "_Float16 test failed!\n");
        return 1;
    }

#ifdef __clang__
    {
        float16_t f(1.0f16);
        _Float16 f2 = (_Float16)f;
        if (f2 != 1.0f16) {
            fprintf(stderr, "Roundtrip of 16-bit float via _Float16 failed.\n");
            return 1;
        }
    }
#else
    printf("Only clang supports _Float16 constant literal 'f16' suffix, skipping roundtrip test\n");
#endif

#else
    printf("[Compiler does not support _Float16, skipping]\n");
#endif

    printf("Success!\n");
    return 0;
}