1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#include "Halide.h"
#include <array>
#include <functional>
#include <random>
#include <stdio.h>
#include <time.h>
// Test the simplifier in Halide by testing for equivalence of randomly generated expressions.
namespace {
using std::map;
using std::string;
using namespace Halide;
using namespace Halide::Internal;
typedef Expr (*make_bin_op_fn)(Expr, Expr);
const int fuzz_var_count = 5;
Type fuzz_types[] = {UInt(1), UInt(8), UInt(16), UInt(32), Int(8), Int(16), Int(32)};
std::string fuzz_var(int i) {
return std::string(1, 'a' + i);
}
Expr random_var(std::mt19937 &rng, Type t) {
int fuzz_count = rng() % (fuzz_var_count - 1);
return cast(t, Variable::make(Int(32), fuzz_var(fuzz_count)));
}
template<typename T, int N>
T random_choice(std::mt19937 &rng, const T (&choices)[N]) {
return choices[rng() % N];
}
template<typename T>
T random_choice(std::mt19937 &rng, const std::vector<T> &choices) {
return choices[rng() % choices.size()];
}
template<typename T, size_t N>
T random_choice(std::mt19937 &rng, const std::array<T, N> &choices) {
return choices[rng() % N];
}
Type random_type(std::mt19937 &rng, int width) {
Type t = random_choice(rng, fuzz_types);
if (width > 1) {
t = t.with_lanes(width);
}
return t;
}
int get_random_divisor(std::mt19937 &rng, Type t) {
std::vector<int> divisors = {t.lanes()};
for (int dd = 2; dd < t.lanes(); dd++) {
if (t.lanes() % dd == 0) {
divisors.push_back(dd);
}
}
return random_choice(rng, divisors);
}
Expr random_leaf(std::mt19937 &rng, Type t, bool overflow_undef = false, bool imm_only = false) {
if (t.is_int() && t.bits() == 32) {
overflow_undef = true;
}
if (t.is_scalar()) {
if (!imm_only && (rng() & 1)) {
return random_var(rng, t);
} else {
if (overflow_undef) {
// For Int(32), we don't care about correctness during
// overflow, so just use numbers that are unlikely to
// overflow.
return cast(t, (int32_t)((int8_t)(rng() & 255)));
} else {
return cast(t, (int32_t)(rng()));
}
}
} else {
int lanes = get_random_divisor(rng, t);
if (rng() & 1) {
auto e1 = random_leaf(rng, t.with_lanes(t.lanes() / lanes), overflow_undef);
auto e2 = random_leaf(rng, t.with_lanes(t.lanes() / lanes), overflow_undef);
return Ramp::make(e1, e2, lanes);
} else {
auto e1 = random_leaf(rng, t.with_lanes(t.lanes() / lanes), overflow_undef);
return Broadcast::make(e1, lanes);
}
}
}
Expr random_expr(std::mt19937 &rng, Type t, int depth, bool overflow_undef = false);
Expr random_condition(std::mt19937 &rng, Type t, int depth, bool maybe_scalar) {
static make_bin_op_fn make_bin_op[] = {
EQ::make,
NE::make,
LT::make,
LE::make,
GT::make,
GE::make,
};
if (maybe_scalar && (rng() & 1)) {
t = t.element_of();
}
Expr a = random_expr(rng, t, depth);
Expr b = random_expr(rng, t, depth);
return random_choice(rng, make_bin_op)(a, b);
}
Expr make_absd(Expr a, Expr b) {
// random_expr() assumes that the result t is the same as the input t,
// which isn't true for all absd variants, so force the issue.
return cast(a.type(), absd(a, b));
}
Expr make_bitwise_or(Expr a, Expr b) {
return a | b;
}
Expr make_bitwise_and(Expr a, Expr b) {
return a & b;
}
Expr make_bitwise_xor(Expr a, Expr b) {
return a ^ b;
}
// This just exists to make sure bitwise not gets used somewhere
Expr make_bitwise_nor(Expr a, Expr b) {
return ~a | ~b;
}
Expr random_expr(std::mt19937 &rng, Type t, int depth, bool overflow_undef) {
if (t.is_int() && t.bits() == 32) {
overflow_undef = true;
}
if (depth-- <= 0) {
return random_leaf(rng, t, overflow_undef);
}
std::function<Expr()> operations[] = {
[&]() {
return random_leaf(rng, t);
},
[&]() {
auto c = random_condition(rng, t, depth, true);
auto e1 = random_expr(rng, t, depth, overflow_undef);
auto e2 = random_expr(rng, t, depth, overflow_undef);
return select(c, e1, e2);
},
[&]() {
if (t.lanes() != 1) {
int lanes = get_random_divisor(rng, t);
auto e1 = random_expr(rng, t.with_lanes(t.lanes() / lanes), depth, overflow_undef);
return Broadcast::make(e1, lanes);
}
return random_expr(rng, t, depth, overflow_undef);
},
[&]() {
if (t.lanes() != 1) {
int lanes = get_random_divisor(rng, t);
auto e1 = random_expr(rng, t.with_lanes(t.lanes() / lanes), depth, overflow_undef);
auto e2 = random_expr(rng, t.with_lanes(t.lanes() / lanes), depth, overflow_undef);
return Ramp::make(e1, e2, lanes);
}
return random_expr(rng, t, depth, overflow_undef);
},
[&]() {
if (t.is_bool()) {
auto e1 = random_expr(rng, t, depth);
return Not::make(e1);
}
return random_expr(rng, t, depth, overflow_undef);
},
[&]() {
// When generating boolean expressions, maybe throw in a condition on non-bool types.
if (t.is_bool()) {
return random_condition(rng, random_type(rng, t.lanes()), depth, false);
}
return random_expr(rng, t, depth, overflow_undef);
},
[&]() {
// Get a random type that isn't t or int32 (int32 can overflow and we don't care about that).
// Note also that the std::mt19937 doesn't actually promise to return a random distribution --
// it can (e.g.) decide to just return 0 for all data, forever -- so this loop has no guarantee
// of eventually finding a different type. To remedy this, we'll just put a limit on the retries.
int count = 0;
Type subtype;
do {
subtype = random_type(rng, t.lanes());
} while (++count < 10 && (subtype == t || (subtype.is_int() && subtype.bits() == 32)));
auto e1 = random_expr(rng, subtype, depth, overflow_undef);
return Cast::make(t, e1);
},
[&]() {
static make_bin_op_fn make_bin_op[] = {
// Arithmetic operations.
Add::make,
Sub::make,
Mul::make,
Min::make,
Max::make,
Div::make,
Mod::make,
make_absd,
make_bitwise_or,
make_bitwise_and,
make_bitwise_xor,
make_bitwise_nor,
};
Expr a = random_expr(rng, t, depth, overflow_undef);
Expr b = random_expr(rng, t, depth, overflow_undef);
return random_choice(rng, make_bin_op)(a, b);
},
[&]() {
static make_bin_op_fn make_bin_op[] = {
And::make,
Or::make,
};
// Boolean operations -- both sides must be cast to booleans,
// and then we must cast the result back to 't'.
Expr a = random_expr(rng, t, depth, overflow_undef);
Expr b = random_expr(rng, t, depth, overflow_undef);
Type bool_with_lanes = Bool(t.lanes());
a = cast(bool_with_lanes, a);
b = cast(bool_with_lanes, b);
return cast(t, random_choice(rng, make_bin_op)(a, b));
}};
return random_choice(rng, operations)();
}
bool test_simplification(Expr a, Expr b, Type t, const map<string, Expr> &vars) {
for (int j = 0; j < t.lanes(); j++) {
Expr a_j = a;
Expr b_j = b;
if (t.lanes() != 1) {
a_j = extract_lane(a, j);
b_j = extract_lane(b, j);
}
Expr a_j_v = simplify(substitute(vars, a_j));
Expr b_j_v = simplify(substitute(vars, b_j));
// If the simplifier didn't produce constants, there must be
// undefined behavior in this expression. Ignore it.
if (!Internal::is_const(a_j_v) || !Internal::is_const(b_j_v)) {
continue;
}
if (!equal(a_j_v, b_j_v)) {
std::cerr << "Simplified Expr is not equal() to Original Expr!\n";
for (map<string, Expr>::const_iterator i = vars.begin(); i != vars.end(); i++) {
std::cerr << "Var " << i->first << " = " << i->second << "\n";
}
std::cerr << "Original Expr is: " << a << "\n";
std::cerr << "Simplified Expr is: " << b << "\n";
std::cerr << "In vector lane " << j << ", original -> simplified:\n";
std::cerr << " " << a_j << " -> " << a_j_v << "\n";
std::cerr << " " << b_j << " -> " << b_j_v << "\n";
return false;
}
}
return true;
}
bool test_expression(std::mt19937 &rng, Expr test, int samples) {
Expr simplified = simplify(test);
map<string, Expr> vars;
for (int i = 0; i < fuzz_var_count; i++) {
vars[fuzz_var(i)] = Expr();
}
for (int i = 0; i < samples; i++) {
for (std::map<string, Expr>::iterator v = vars.begin(); v != vars.end(); v++) {
size_t kMaxLeafIterations = 10000;
// Don't let the random leaf depend on v itself.
size_t iterations = 0;
do {
v->second = random_leaf(rng, Int(32), true);
iterations++;
} while (expr_uses_var(v->second, v->first) && iterations < kMaxLeafIterations);
}
if (!test_simplification(test, simplified, test.type(), vars)) {
return false;
}
}
return true;
}
} // namespace
int main(int argc, char **argv) {
// Depth of the randomly generated expression trees.
const int depth = 5;
// Number of samples to test the generated expressions for.
const int samples = 3;
std::mt19937 seed_generator{(uint32_t)time(NULL)};
for (int i = 0; i < ((argc == 1) ? 10000 : 1); i++) {
uint32_t seed = seed_generator();
if (argc > 1) {
seed = atoi(argv[1]);
}
// Print the seed on every iteration so that if the simplifier crashes
// (rather than the check failing), we can reproduce.
printf("Seed: %d\n", seed);
std::mt19937 rng{seed};
std::array<int, 6> vector_widths = {1, 2, 3, 4, 6, 8};
int width = random_choice(rng, vector_widths);
Type VT = random_type(rng, width);
// Generate a random expr...
Expr test = random_expr(rng, VT, depth);
if (!test_expression(rng, test, samples)) {
// Failure. Find the minimal subexpression that failed.
printf("Testing subexpressions...\n");
class TestSubexpressions : public IRMutator {
std::mt19937 &rng;
bool found_failure = false;
public:
using IRMutator::mutate;
Expr mutate(const Expr &e) override {
// We know there's a failure here somewhere, so test
// subexpressions more aggressively.
IRMutator::mutate(e);
if (e.type().bits() && !found_failure) {
const int samples = 100;
found_failure = !test_expression(rng, e, samples);
}
return e;
}
TestSubexpressions(std::mt19937 &rng)
: rng(rng) {
}
} tester(rng);
tester.mutate(test);
printf("Failed with seed %d\n", seed);
return 1;
}
}
printf("Success!\n");
return 0;
}
|