1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
#include "Halide.h"
using namespace Halide;
int multi_thread_type_test(MemoryType memory_type) {
Func f1("f1"), f2("f2"), f3("f3"), f4("f4"), f5("f5"), f6("f6");
Var x, y, z;
f1(x, y, z) = cast<uint8_t>(1);
f2(x, y, z) = cast<uint32_t>(f1(x + 1, y, z) + f1(x, y + 1, z));
f3(x, y, z) = cast<uint16_t>(f2(x + 1, y, z) + f2(x, y + 1, z));
f4(x, y, z) = cast<uint16_t>(f3(x + 1, y, z) + f3(x, y + 1, z));
f5(x, y, z) = cast<uint32_t>(f4(x + 1, y, z) + f4(x, y + 1, z));
f6(x, y, z) = cast<uint8_t>(f5(x + 1, y, z) + f5(x, y + 1, z));
Var thread_x, thread_y;
f6.compute_root().gpu_tile(x, y, thread_x, thread_y, 1, 1);
f5.compute_at(f6, x).gpu_threads(x, y).store_in(memory_type);
f4.compute_at(f6, x).gpu_threads(x, y).store_in(memory_type);
f3.compute_at(f6, x).gpu_threads(x, y).store_in(memory_type);
f2.compute_at(f6, x).gpu_threads(x, y).store_in(memory_type);
f1.compute_at(f6, x).gpu_threads(x, y).store_in(memory_type);
const int size_x = 200;
const int size_y = 200;
const int size_z = 4;
Buffer<uint8_t> out = f6.realize({size_x, size_y, size_z});
uint8_t correct = 32;
for (int z = 0; z < size_z; z++) {
for (int y = 0; y < size_y; y++) {
for (int x = 0; x < size_x; x++) {
if (out(x, y, z) != correct) {
printf("out(%d, %d, %d) = %d instead of %d\n",
x, y, z, out(x, y, z), correct);
return 1;
}
}
}
}
printf("OK\n");
return 0;
}
int pyramid_test(MemoryType memory_type) {
const int levels = 10;
const int size_x = 100;
const int size_y = 100;
Var x, y, z, xo, xi, yo, yi, thread_x, thread_y;
std::vector<Func> funcs(levels);
funcs[0](x, y) = 1;
for (int i = 1; i < levels; ++i) {
funcs[i](x, y) = funcs[i - 1](2 * x, y);
}
funcs[levels - 1]
.compute_root()
.gpu_tile(x, y, thread_x, thread_y, 3, 4);
for (int i = levels - 2; i >= 0; --i) {
funcs[i]
.compute_at(funcs[levels - 1], x)
.split(x, xo, xi, 1 << (levels - i - 1))
.gpu_threads(xo, y)
.store_in(memory_type);
}
Buffer<int> out = funcs[levels - 1].realize({size_x, size_y});
int correct = 1;
for (int y = 0; y < size_y; y++) {
for (int x = 0; x < size_x; x++) {
if (out(x, y) != correct) {
printf("out(%d, %d) = %d instead of %d\n",
x, y, out(x, y), correct);
return 1;
}
}
}
printf("OK\n");
return 0;
}
int inverted_pyramid_test(MemoryType memory_type) {
const int levels = 6;
const int size_x = 8 * 16 * 4;
const int size_y = 8 * 16 * 4;
Var x, y, z, yo, yi, yii, xo, xi, xii, thread_x, thread_y;
std::vector<Func> funcs(levels);
funcs[0](x, y) = 1;
for (int i = 1; i < levels; ++i) {
funcs[i](x, y) = funcs[i - 1](x / 2, y);
}
funcs[levels - 1]
.compute_root()
.tile(x, y, xi, yi, 64, 64)
.gpu_blocks(x, y)
.tile(xi, yi, xii, yii, 16, 16)
.gpu_threads(xi, yi);
for (int i = levels - 2; i >= 0; --i) {
funcs[i]
.compute_at(funcs[levels - 1], x)
.tile(x, y, xi, yi, 4, 4)
.gpu_threads(xi, yi)
.store_in(memory_type);
}
funcs[levels - 1]
.bound(x, 0, size_x)
.bound(y, 0, size_y);
Buffer<int> out = funcs[levels - 1].realize({size_x, size_y});
int correct = 1;
for (int y = 0; y < size_y; y++) {
for (int x = 0; x < size_x; x++) {
if (out(x, y) != correct) {
printf("out(%d, %d) = %d instead of %d\n",
x, y, out(x, y), correct);
return 1;
}
}
}
printf("OK\n");
return 0;
}
int dynamic_shared_test(MemoryType memory_type) {
Func f1, f2, f3, f4;
Var x, xo, xi, thread_xo;
f1(x) = x;
f2(x) = f1(x) + f1(2 * x);
f3(x) = f2(x) + f2(2 * x);
f4(x) = f3(x) + f3(2 * x);
f4.split(x, xo, xi, 16).gpu_tile(xo, thread_xo, 16);
f3.compute_at(f4, xo).split(x, xo, xi, 16).gpu_threads(xi).store_in(memory_type);
f2.compute_at(f4, xo).split(x, xo, xi, 16).gpu_threads(xi).store_in(memory_type);
f1.compute_at(f4, xo).split(x, xo, xi, 16).gpu_threads(xi).store_in(memory_type);
// The amount of shared memory required varies with x
Buffer<int> out = f4.realize({500});
for (int x = 0; x < out.width(); x++) {
int correct = 27 * x;
if (out(x) != correct) {
printf("out(%d) = %d instead of %d\n",
x, out(x), correct);
return 1;
}
}
printf("OK\n");
return 0;
}
int main(int argc, char **argv) {
Target t = get_jit_target_from_environment();
if (!t.has_gpu_feature()) {
printf("[SKIP] No GPU target enabled.\n");
return 0;
}
for (auto memory_type : {MemoryType::GPUShared, MemoryType::Heap}) {
printf("Running multi thread type test\n");
if (multi_thread_type_test(memory_type) != 0) {
return 1;
}
printf("Running pyramid test\n");
if (pyramid_test(memory_type) != 0) {
return 1;
}
printf("Running inverted pyramid test\n");
if (inverted_pyramid_test(memory_type) != 0) {
return 1;
}
printf("Running dynamic shared test\n");
if (t.has_feature(Target::Vulkan) && ((t.os == Target::IOS) || t.os == Target::OSX)) {
printf("Skipping test for Vulkan on iOS/OSX (MoltenVK doesn't support dynamic sizes for shared memory)!\n");
} else {
if (dynamic_shared_test(memory_type) != 0) {
return 1;
}
}
}
printf("Success!\n");
return 0;
}
|