File: halide_buffer.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (553 lines) | stat: -rw-r--r-- 19,307 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#include <iostream>
// Don't include Halide.h: it is not necessary for this test.
#include "HalideBuffer.h"

#include <stdio.h>

using namespace Halide::Runtime;

static void *my_malloced_addr = nullptr;
static int my_malloc_count = 0;
static void *my_freed_addr = nullptr;
static int my_free_count = 0;
void *my_malloc(size_t size) {
    void *ptr = malloc(size);
    my_malloced_addr = ptr;
    my_malloc_count++;
    return ptr;
}
void my_free(void *ptr) {
    my_freed_addr = ptr;
    my_free_count++;
    free(ptr);
}

template<typename T1, typename T2>
void check_equal_shape(const Buffer<T1> &a, const Buffer<T2> &b) {
    if (a.dimensions() != b.dimensions()) abort();
    for (int i = 0; i < a.dimensions(); i++) {
        if (a.dim(i).min() != b.dim(i).min() ||
            a.dim(i).extent() != b.dim(i).extent()) {
            abort();
        }
    }
}

template<typename T1, typename T2>
void check_equal(const Buffer<T1> &a, const Buffer<T2> &b) {
    check_equal_shape(a, b);
    a.for_each_element([&](const int *pos) {
        if (a(pos) != b(pos)) {
            printf("Mismatch: %f vs %f at %d %d %d\n",
                   (float)(a(pos)), (float)(b(pos)), pos[0], pos[1], pos[2]);
            abort();
        }
    });
}

void test_copy(Buffer<float> a, Buffer<float> b) {
    // Mess with the memory layout to make it more interesting
    a.transpose(1, 2);

    a.fill(1.0f);

    assert(a.all_equal(1.0f));

    b.fill([&](int x, int y, int c) {
        return x + 100.0f * y + 100000.0f * c;
    });

    b.for_each_element([&](int x, int y, int c) {
        assert(b(x, y, c) == x + 100.0f * y + 100000.0f * c);
    });

    check_equal(a, a.copy());

    // Check copying from one subregion to another (with different memory layout)
    Buffer<float> a_window = a.cropped(0, 20, 20).cropped(1, 50, 10);
    Buffer<const float> b_window = b.cropped(0, 20, 20).cropped(1, 50, 10);
    a_window.copy_from(b);

    check_equal(a_window, b_window);

    // Check copying from const to nonconst
    Buffer<float> a_window_nonconst = b_window.copy();
    check_equal(a_window_nonconst, b_window);

    // Check copying from const to const
    Buffer<const float> a_window_const = b_window.copy();
    check_equal(a_window_const, b_window);

    // You don't actually have to crop a.
    a.fill(1.0f);
    a.copy_from(b_window);
    check_equal(a_window, b_window);

    // The buffers can have dynamic type
    Buffer<void> a_void(a);
    Buffer<const void> b_void_window(b_window);
    a.fill(1.0f);
    a_void.copy_from(b_void_window);
    check_equal(a_window, b_window);

    // Check copy_to_interleaved()
    assert(a.stride(0) == 1);
    auto a_interleaved = a.copy_to_interleaved();
    assert(a_interleaved.stride(0) == a_interleaved.channels());
    assert(a_interleaved.stride(2) == 1);
    check_equal(a, a_interleaved);

    // Check copy_to_planar()
    auto a_planar = a_interleaved.copy_to_planar();
    assert(a_planar.stride(0) == 1);
    check_equal(a, a_planar);
}

int main(int argc, char **argv) {
    {
        // Check copying a buffer
        Buffer<float> a(100, 3, 80), b(120, 80, 3);
        test_copy(a, b);
    }

    {
        // Check copying a buffer, using the halide_dimension_t pointer ctors
        halide_dimension_t shape_a[] = {{0, 100, 1},
                                        {0, 3, 1 * 100},
                                        {0, 80, 1 * 100 * 3}};
        Buffer<float> a(nullptr, 3, shape_a);
        a.allocate();

        halide_dimension_t shape_b[] = {{0, 120, 1},
                                        {0, 80, 1 * 120},
                                        {0, 3, 1 * 120 * 80}};
        Buffer<float> b(nullptr, 3, shape_b);
        b.allocate();

        test_copy(a, b);
    }

    {
        // Check copying a buffer, using the vector<halide_dimension_t> ctors
        Buffer<float> a(nullptr, {{0, 100, 1},
                                  {0, 3, 1 * 100},
                                  {0, 80, 1 * 100 * 3}});
        a.allocate();

        Buffer<float> b(nullptr, {{0, 120, 1},
                                  {0, 80, 1 * 120},
                                  {0, 3, 1 * 120 * 80}});
        b.allocate();

        test_copy(a, b);
    }

    {
        // Check make a Buffer from a Buffer of a different type
        Buffer<float> a(100, 80);
        Buffer<const float> b(a);  // statically safe
        Buffer<const void> c(b);   // statically safe
        Buffer<const float> d(c);  // does runtime check of actual type.
        Buffer<void> e(a);         // statically safe
        Buffer<float> f(e);        // runtime checks

        static_assert(a.has_static_halide_type);
        static_assert(b.has_static_halide_type);
        static_assert(!c.has_static_halide_type);
        static_assert(d.has_static_halide_type);
        static_assert(!e.has_static_halide_type);
        static_assert(f.has_static_halide_type);

        static_assert(a.static_halide_type() == halide_type_of<float>());
        static_assert(b.static_halide_type() == halide_type_of<float>());
        static_assert(d.static_halide_type() == halide_type_of<float>());
        static_assert(f.static_halide_type() == halide_type_of<float>());
    }

    {
        // Check Buffers with static dimensionality
        Buffer<float, 2> a(100, 80);
        Buffer<float, 2> b(a);        // statically safe
        Buffer<float> c(a);           // checks at runtime (and succeeds)
        Buffer<float, AnyDims> d(a);  // same as previous, just explicit syntax
        Buffer<float, 2> e(d);        // checks at runtime (and succeeds because d.dims = 2)
        // Buffer<float, 3> f(a);     // won't compile: static_assert failure
        // Buffer<float, 3> g(c);     // fails at runtime: c.dims = 2

        static_assert(a.has_static_dimensions);
        static_assert(b.has_static_dimensions);
        static_assert(!c.has_static_dimensions);
        static_assert(!d.has_static_dimensions);
        static_assert(e.has_static_dimensions);

        static_assert(a.static_dimensions() == 2);
        static_assert(b.static_dimensions() == 2);
        static_assert(e.static_dimensions() == 2);

        Buffer<float> s1 = a.sliced(0);
        assert(s1.dimensions() == 1);
        assert(s1.dim(0).extent() == 80);

        Buffer<float, 1> s2 = a.sliced(1);
        assert(s2.dimensions() == 1);
        assert(s2.dim(0).extent() == 100);

        Buffer<float, 0> s3 = s2.sliced(0);
        static_assert(a.has_static_dimensions && s3.static_dimensions() == 0);
        assert(s3.dimensions() == 0);

        // auto s3a = s3.sliced(0);              // won't compile: can't call sliced() on a zero-dim buffer
        // Buffer<float, 2> s3b = a.sliced(0);   // won't compile: return type has incompatible dimensionality
        // a.slice(0);                           // won't compile: can't call slice() on static-dimensioned buffer

        Buffer<float> s4 = a.sliced(0);  // assign to dynamic-dimensioned result
        static_assert(!s4.has_static_dimensions);
        assert(s4.dimensions() == 1);

        s4.slice(0);  // ok to call on dynamic-dimensioned
        assert(s4.dimensions() == 0);

        Buffer<float, 0> e0 = Buffer<float, 0>::make_scalar();

        auto e1 = e0.embedded(0);
        static_assert(e1.has_static_dimensions && e1.static_dimensions() == 1);
        assert(e1.dimensions() == 1);

        // Buffer<float, 0> e2 = a.embedded(0);  // won't compile: return type has incompatible dimensionality
        // e1.embed(0);                          // won't compile: can't call embed() on static-dimensioned buffer

        Buffer<float> e3 = e0.embedded(0);  // assign to dynamic-dimensioned result
        static_assert(!e3.has_static_dimensions);
        assert(e3.dimensions() == 1);

        e3.embed(0);  // ok to call on dynamic-dimensioned
        assert(e3.dimensions() == 2);
    }

    {
        // Check moving a buffer around
        Buffer<float> a(100, 80, 3);
        a.for_each_element([&](int x, int y, int c) {
            a(x, y, c) = x + 100.0f * y + 100000.0f * c;
        });
        Buffer<float> b(a);
        b.set_min(123, 456, 2);
        b.translate({-123, -456, -2});
        check_equal(a, b);
    }

    {
        Buffer<float> a(100, 80, 3);
        a.for_each_element([&](int x, int y, int c) {
            a(x, y, c) = x + 100.0f * y + 100000.0f * c;
        });
        Buffer<float> b(a);

        // Check that Buffer<T> will autoconvert to Buffer<const T>&
        const auto check_equal_non_const_ref = [](Buffer<const float> &a, Buffer<const float> &b) {
            check_equal(a, b);
        };
        check_equal_non_const_ref(a, b);

        // Check that Buffer<T> will autoconvert to Buffer<void>&
        const auto check_equal_non_const_void_ref = [](Buffer<void> &a, Buffer<void> &b) {
            check_equal(a.as<float>(), b.as<float>());
        };
        check_equal_non_const_void_ref(a, b);

        // Check that Buffer<const T> will autoconvert to Buffer<const void>&
        const auto check_equal_const_void_ref = [](Buffer<const void> &a, Buffer<const void> &b) {
            check_equal(a.as<const float>(), b.as<const float>());
        };
        Buffer<const float> ac = a;
        Buffer<const float> bc = b;
        check_equal_const_void_ref(ac, bc);
    }

    {
        // Check lifting a function over scalars to a function over entire buffers.
        const int W = 5, H = 4, C = 3;
        Buffer<float> a(W, H, C);
        Buffer<float> b = Buffer<float>::make_interleaved(W, H, C);
        int counter = 0;
        b.for_each_value([&](float &b) {
            counter += 1;
            b = counter;
        });
        a.for_each_value([&](float &a, float b) {
            a = 2 * b;
        },
                         b);

        if (counter != W * H * C) {
            printf("for_each_value didn't hit every element\n");
            return 1;
        }

        a.for_each_element([&](int x, int y, int c) {
            // The original for_each_value iterated over b, which is
            // interleaved, so we expect the counter to count up c
            // fastest.
            float correct_b = 1 + c + C * (x + W * y);
            float correct_a = correct_b * 2;
            if (b(x, y, c) != correct_b) {
                printf("b(%d, %d, %d) = %f instead of %f\n",
                       x, y, c, b(x, y, c), correct_b);
                abort();
            }
            if (a(x, y, c) != correct_a) {
                printf("a(%d, %d, %d) = %f instead of %f\n",
                       x, y, c, a(x, y, c), correct_a);
                abort();
            }
        });
    }

    {
        // Check that copy() works to/from Buffer<void>
        Buffer<int> a(2, 2);
        a.fill(42);

        Buffer<> b = a.copy();
        assert(b.as<int>().all_equal(42));

        Buffer<int> c = b.copy();
        assert(c.all_equal(42));

        // This will fail at runtime, as c and d do not have identical types
        // Buffer<uint8_t> d = c.copy();
        // assert(d.all_equal(42));
    }

    {
        int data[4] = {42, 42, 42, 42};

        // Check that copy() works with const
        Buffer<const int> a(data, 2, 2);

        Buffer<const int> b = a.copy();
        assert(b.all_equal(42));
    }

    {
        // Check the fields get zero-initialized with the default constructor.
        uint8_t buf[sizeof(Halide::Runtime::Buffer<float>)];
        memset(&buf, 1, sizeof(buf));
        new (&buf) Halide::Runtime::Buffer<float>();
        // The dim and type fields should be non-zero, but the other
        // fields should all be zero. We'll just check the ones after
        // the halide_buffer_t.
        for (size_t i = sizeof(halide_buffer_t); i < sizeof(buf); i++) {
            assert(!buf[i]);
        }
    }

    {
        // check reset()
        Buffer<float> a(100, 3, 80);

        assert(a.dimensions() == 3);
        assert(a.number_of_elements() == 100 * 3 * 80);
        assert(a.type() == halide_type_of<float>());

        a.reset();
        assert(a.dimensions() == 0);
        assert(a.number_of_elements() == 1);
        assert(a.type() == halide_type_of<float>());

        Buffer<> b(halide_type_of<float>(), 10, 10);

        assert(b.dimensions() == 2);
        assert(b.number_of_elements() == 10 * 10);
        assert(b.type() == halide_type_of<float>());

        b.reset();
        assert(b.dimensions() == 0);
        assert(b.number_of_elements() == 1);
        assert(b.type() == halide_type_of<uint8_t>());
    }

    {
        // Check for_each_value on a const buffer(s)
        const int W = 5, H = 4, C = 3;
        Buffer<int> zero(W, H, C);
        zero.fill(0);

        const Buffer<int> a = zero.copy();
        const Buffer<const int> a_const = a;
        const Buffer<int> b = zero.copy();
        const Buffer<const int> b_const = b;
        Buffer<int> c = zero.copy();
        int counter;

        counter = 0;
        a.for_each_value([&](const int &a_value) { counter += 1; });
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a.for_each_value([&](int a_value) { counter += 1; });
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a.for_each_value([&](int a_value, int b_value) { counter += 1; }, b);
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a.for_each_value([&](int a_value, const int &b_value) { counter += 1; }, b);
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a_const.for_each_value([&](const int &a_value) { counter += 1; });
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a_const.for_each_value([&](int a_value) { counter += 1; });
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a_const.for_each_value([&](int a_value, int b_value) { counter += 1; }, b_const);
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a_const.for_each_value([&](int a_value, const int &b_value) { counter += 1; }, b_const);
        assert(counter == 5 * 4 * 3);

        counter = 0;
        a.for_each_value([&](int a_value, const int &b_value, int &c_value_ref) {
            counter += 1;
            c_value_ref = 1;
        },
                         b, c);
        assert(counter == 5 * 4 * 3);
        assert(a.all_equal(0));
        assert(b.all_equal(0));
        assert(c.all_equal(1));

        counter = 0;
        c.for_each_value([&](int &c_value_ref, const int &b_value, int a_value) {
            counter += 1;
            c_value_ref = 2;
        },
                         b, a);
        assert(counter == 5 * 4 * 3);
        assert(a.all_equal(0));
        assert(b.all_equal(0));
        assert(c.all_equal(2));

        counter = 0;
        a_const.for_each_value([&](int a_value, const int &b_value, int &c_value_ref) {
            counter += 1;
            c_value_ref = 1;
        },
                               b_const, c);
        assert(counter == 5 * 4 * 3);
        assert(a.all_equal(0));
        assert(b.all_equal(0));
        assert(c.all_equal(1));

        counter = 0;
        c.for_each_value([&](int &c_value_ref, const int &b_value, int a_value) {
            counter += 1;
            c_value_ref = 2;
        },
                         b_const, a_const);
        assert(counter == 5 * 4 * 3);
        assert(a.all_equal(0));
        assert(b.all_equal(0));
        assert(c.all_equal(2));

        // Won't compile: a_const is const T, can't specify a nonconst ref for value
        // a_const.for_each_value([&](int &a_value) { });

        // Won't compile: b_const is const, can't specify a nonconst ref for value
        // a.for_each_value([&](int a_value, int &b_value) { }, b_const);

        // Won't compile: a is const, can't specify a nonconst ref for value
        // c.for_each_value([&](int c_value, int &a_value, int &b_value) { }, a_const, b);

        // Won't compile: a and b are const, can't specify a nonconst ref for value
        // c.for_each_value([&](int c_value, int a_value, int &b_value) { }, a_const, b_const);
    }

    {
        // Check initializing const buffers via return ref from fill(), etc
        const int W = 5, H = 4;

        const Buffer<const int> a = Buffer<int>(W, H).fill(1);
        assert(a.all_equal(1));

        const Buffer<const int> b = Buffer<int>(W, H).for_each_value([](int &value) { value = 2; });
        assert(b.all_equal(2));

        // for_each_element()'s callback doesn't get the Buffer itself, so we need a named temp here
        auto c0 = Buffer<int>(W, H);
        const Buffer<const int> c = c0.for_each_element([&](int x, int y) { c0(x, y) = 3; });
        assert(c.all_equal(3));

        const Buffer<const int> d = Buffer<int>(W, H).fill([](int x, int y) -> int { return 4; });
        assert(d.all_equal(4));
    }

    {
        constexpr int W = 7, H = 5, C = 3, Z = 2;

        // test reorder() and the related ctors
        auto a = Buffer<uint8_t>({W, H, C}, {2, 0, 1});
        assert(a.dim(0).extent() == W);
        assert(a.dim(1).extent() == H);
        assert(a.dim(2).extent() == C);
        assert(a.dim(2).stride() == 1);
        assert(a.dim(0).stride() == C);
        assert(a.dim(1).stride() == W * C);

        auto b = Buffer<uint8_t>({W, H, C, Z}, {2, 3, 0, 1});
        assert(b.dim(0).extent() == W);
        assert(b.dim(1).extent() == H);
        assert(b.dim(2).extent() == C);
        assert(b.dim(3).extent() == Z);
        assert(b.dim(2).stride() == 1);
        assert(b.dim(3).stride() == C);
        assert(b.dim(0).stride() == C * Z);
        assert(b.dim(1).stride() == W * C * Z);

        auto b2 = Buffer<uint8_t>(C, Z, W, H);
        assert(b.dim(0).extent() == b2.dim(2).extent());
        assert(b.dim(1).extent() == b2.dim(3).extent());
        assert(b.dim(2).extent() == b2.dim(0).extent());
        assert(b.dim(3).extent() == b2.dim(1).extent());
        assert(b.dim(0).stride() == b2.dim(2).stride());
        assert(b.dim(1).stride() == b2.dim(3).stride());
        assert(b.dim(2).stride() == b2.dim(0).stride());
        assert(b.dim(3).stride() == b2.dim(1).stride());

        b2.transpose({2, 3, 0, 1});
        assert(b.dim(0).extent() == b2.dim(0).extent());
        assert(b.dim(1).extent() == b2.dim(1).extent());
        assert(b.dim(2).extent() == b2.dim(2).extent());
        assert(b.dim(3).extent() == b2.dim(3).extent());
        assert(b.dim(0).stride() == b2.dim(0).stride());
        assert(b.dim(1).stride() == b2.dim(1).stride());
        assert(b.dim(2).stride() == b2.dim(2).stride());
        assert(b.dim(3).stride() == b2.dim(3).stride());
    }

    {
        // Test setting default allocate and deallocate functions.
        Buffer<>::set_default_allocate_fn(my_malloc);
        Buffer<>::set_default_deallocate_fn(my_free);

        assert(my_malloc_count == 0);
        assert(my_free_count == 0);
        auto b = Buffer<uint8_t, 2>(5, 4).fill(1);
        assert(my_malloced_addr != nullptr && my_malloced_addr < b.data());
        assert(my_malloc_count == 1);
        assert(my_free_count == 0);
        b.deallocate();
        assert(my_malloc_count == 1);
        assert(my_free_count == 1);
        assert(my_malloced_addr == my_freed_addr);
    }

    printf("Success!\n");
    return 0;
}