1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
#include "Halide.h"
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
int W = 1000, H = 1000;
// Compute a random 8-bit image with a very biased histogram
Buffer<uint8_t> in(W, H);
for (int y = 0; y < H; y++) {
for (int x = 0; x < W; x++) {
unsigned r1 = rand();
r1 = r1 & 0xff;
in(x, y) = r1 / 2 + 64;
}
}
Func hist, cdf, equalized, rescaled;
RDom r(in), ri(0, 255);
Var x, y, i;
// Compute the histogram
hist(in(r.x, r.y)) += 1;
// Integrate it to produce a cdf
cdf(i) = 0;
cdf(ri.x) = cdf(ri.x - 1) + hist(ri.x);
// Remap the input using the cdf
equalized(x, y) = cdf(in(x, y));
hist.compute_root();
cdf.compute_root();
// Scale the result back to 8-bit
int pixels = in.extent(0) * in.extent(1);
rescaled(i, _) = cast<uint8_t>((equalized(i, _) * 256) / pixels);
Buffer<uint8_t> out = rescaled.realize({in.width(), in.height()});
// Compute the histogram of the output
int out_hist[16], in_hist[16];
for (int i = 0; i < 16; i++) {
out_hist[i] = in_hist[i] = 0;
}
for (int y = 0; y < out.height(); y++) {
for (int x = 0; x < out.width(); x++) {
out_hist[out(x, y) / 16]++;
in_hist[in(x, y) / 16]++;
}
}
for (int i = 0; i < 16; i++) {
// There should be roughly 1000*1000/16 pixels per bucket = 62500
int correct = (in.width() * in.height()) / 16;
if (out_hist[i] < correct / 2 || out_hist[i] > 2 * correct) {
printf("Expected histogram entries of ~ %d\n", correct);
return 1;
}
}
printf("Success!\n");
return 0;
}
|