File: image_io.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (288 lines) | stat: -rw-r--r-- 9,978 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include "Halide.h"
#include "halide_image_io.h"
#include "halide_test_dirs.h"

#include <fstream>

using namespace Halide;

template<typename T>
void test_round_trip(Buffer<T> buf, std::string format) {
    // Save it
    std::ostringstream o;
    o << Internal::get_test_tmp_dir() << "test_" << halide_type_of<T>() << "x" << buf.channels() << "." << format;
    std::string filename = o.str();
    Tools::save_image(buf, filename);

    // TIFF is write-only for now.
    if (format == "tiff") return;

    // Reload it
    Buffer<T> reloaded = Tools::load_image(filename);

    // Ensure that reloaded has the same origin as buf
    for (int d = 0; d < buf.dimensions(); ++d) {
        reloaded.translate(d, buf.dim(d).min() - reloaded.dim(d).min());
    }

    o = std::ostringstream();
    o << Internal::get_test_tmp_dir() << "test_" << halide_type_of<T>() << "x" << buf.channels() << ".reloaded." << format;
    filename = o.str();
    Tools::save_image(reloaded, filename);

    // Check they're not too different.
    RDom r(reloaded);
    std::vector<Expr> args;
    for (int i = 0; i < r.dimensions(); ++i) {
        args.push_back(r[i]);
    }
    double diff = evaluate<double>(maximum(abs(cast<double>(buf(args)) - cast<double>(reloaded(args)))));

    double max_diff = 0.00001;
    if (format == "jpg") {
        max_diff = 32;
    }
    if (diff > max_diff) {
        printf("test_round_trip: Difference of %f when saved and loaded as %s\n", diff, format.c_str());
        exit(1);
    }
}

// static -> static conversion test
template<typename T>
void test_convert_image_s2s(Buffer<T> buf) {
    std::cout << "Testing static -> static image conversion for " << halide_type_of<T>() << "\n";

    // convert to float
    Buffer<float> buf_float = Tools::ImageTypeConversion::convert_image<float>(buf);

    // convert back to T
    Buffer<T> buf2 = Tools::ImageTypeConversion::convert_image<T>(buf_float);

    // Check that they match (this conversion should be exact).
    RDom r(buf2);
    std::vector<Expr> args = {r.x, r.y, r.z};
    uint32_t diff = evaluate<uint32_t>(maximum(abs(cast<int>(buf(args)) - cast<int>(buf2(args)))));
    if (diff > 0) {
        printf("test_convert_image_s2s: Difference of %d when converted\n", diff);
        exit(1);
    }
}

// dynamic -> static conversion test
template<typename T>
void test_convert_image_d2s(Buffer<T> buf) {
    std::cout << "Testing dynamic -> static image conversion for " << halide_type_of<T>() << "\n";

    // convert to float
    Buffer<> buf_d(buf);
    Buffer<float> buf_float = Tools::ImageTypeConversion::convert_image<float>(buf_d);

    // convert back to T
    Buffer<> buf_float_d(buf_float);
    Buffer<T> buf2 = Tools::ImageTypeConversion::convert_image<T>(buf_float_d);

    // Check that they match (this conversion should be exact).
    RDom r(buf2);
    std::vector<Expr> args = {r.x, r.y, r.z};
    uint32_t diff = evaluate<uint32_t>(maximum(abs(cast<int>(buf(args)) - cast<int>(buf2(args)))));
    if (diff > 0) {
        printf("test_convert_image_d2s: Difference of %d when converted\n", diff);
        exit(1);
    }
}

// static -> dynamic conversion test
template<typename T>
void test_convert_image_s2d(Buffer<T> buf) {
    std::cout << "Testing static -> dynamic image conversion for " << halide_type_of<T>() << "\n";

    // convert to float
    Buffer<> buf_float_d = Tools::ImageTypeConversion::convert_image(buf, halide_type_t(halide_type_float, 32));
    // This will do a runtime check
    Buffer<float> buf_float(buf_float_d);

    // convert back to T
    Buffer<> buf2_d = Tools::ImageTypeConversion::convert_image(buf_float, halide_type_of<T>());
    // This will do a runtime check
    Buffer<T> buf2(buf2_d);

    // Check that they match (this conversion should be exact).
    RDom r(buf2);
    std::vector<Expr> args = {r.x, r.y, r.z};
    uint32_t diff = evaluate<uint32_t>(maximum(abs(cast<int>(buf(args)) - cast<int>(buf2(args)))));
    if (diff > 0) {
        printf("test_convert_image_s2d: Difference of %d when converted\n", diff);
        exit(1);
    }
}

// dynamic -> dynamic conversion test
template<typename T>
void test_convert_image_d2d(Buffer<> buf_d) {
    std::cout << "Testing dynamic -> dynamic image conversion for " << halide_type_of<T>() << "\n";

    // convert to float
    Buffer<> buf_float_d = Tools::ImageTypeConversion::convert_image(buf_d, halide_type_t(halide_type_float, 32));

    // convert back to T
    Buffer<> buf2_d = Tools::ImageTypeConversion::convert_image(buf_float_d, halide_type_of<T>());

    // These will do a runtime check
    Buffer<T> buf(buf_d);
    Buffer<T> buf2(buf2_d);

    // Check that they match (this conversion should be exact).
    RDom r(buf2);
    std::vector<Expr> args = {r.x, r.y, r.z};
    uint32_t diff = evaluate<uint32_t>(maximum(abs(cast<int>(buf(args)) - cast<int>(buf2(args)))));
    if (diff > 0) {
        printf("test_convert_image_d2d: Difference of %d when converted\n", diff);
        exit(1);
    }
}

Func make_noise(int depth) {
    Func f;
    Var x, y, c;
    if (depth == 0) {
        f(x, y, c) = random_float();
    } else {
        Func g = make_noise(depth - 1);
        Func g_up;
        f(x, y, c) = (g(x / 2, y / 2, c) +
                      g((x + 1) / 2, y / 2, c) +
                      g(x / 2, (y + 1) / 2, c) +
                      g((x + 1) / 2, (y + 1) / 2, c) +
                      0.25f * random_float()) /
                     4.25f;
    }
    f.compute_root();
    return f;
}

template<typename T>
void do_test() {
    const int width = 160;
    const int height = 120;

    // Make some colored noise
    Func f;
    Var x, y, c, w;
    const Expr one = std::is_floating_point<T>::value ? Expr(1.0) : Expr(std::numeric_limits<T>::max());
    f(x, y, c) = cast<T>(clamp(make_noise(10)(x, y, c), Expr(0.0), Expr(1.0)) * one);

    Buffer<T> color_buf = f.realize({width, height, 3});

    // Inset it a bit to ensure that saving buffers with nonzero mins works
    const int inset = 4;
    color_buf.crop(0, inset, width - inset * 2);
    color_buf.crop(1, inset, height - inset * 2);

    const auto ht = halide_type_of<T>();
    if (ht == halide_type_t(halide_type_uint, 8) || ht == halide_type_t(halide_type_uint, 16)) {
        test_convert_image_s2s<T>(color_buf);
        test_convert_image_s2d<T>(color_buf);
        test_convert_image_d2s<T>(color_buf);
        test_convert_image_d2d<T>(color_buf);
    }

    Buffer<T> luma_buf(width, height, 1);
    luma_buf.copy_from(color_buf);
    luma_buf.slice(2);

    std::vector<std::string> formats = {"npy", "ppm", "pgm", "tmp", "mat", "tiff"};
#ifndef HALIDE_NO_JPEG
    formats.push_back("jpg");
#endif
#ifndef HALIDE_NO_PNG
    formats.push_back("png");
#endif
    for (std::string format : formats) {
        // .npy is the only format here that supports float16
        if (halide_type_of<T>() == halide_type_t(halide_type_float, 16) && format != "npy") {
            continue;
        }
        if ((format == "jpg" || format == "pgm" || format == "ppm") && ht != halide_type_t(halide_type_uint, 8)) {
            continue;
        }
        if (format == "png" && ht != halide_type_t(halide_type_uint, 8) && ht != halide_type_t(halide_type_uint, 16)) {
            continue;
        }
        if (format == "tmp") {
            // .tmp only supports exactly-4-dimensions, so handle it separately.
            // (Add a dimension to make it 4-dimensional)
            Buffer<T> cb4 = color_buf.embedded(color_buf.dimensions());
            std::cout << "Testing format: " << format << " for " << halide_type_of<T>() << "x4\n";
            test_round_trip(cb4, format);

            // Here we test matching strides
            Func f2;
            f2(x, y, c, w) = f(x, y, c);
            Buffer<T> funky_buf = f2.realize({10, 10, 1, 3});
            funky_buf.fill(42);

            std::cout << "Testing format: " << format << " for " << halide_type_of<T>() << "x4\n";
            test_round_trip(funky_buf, format);

            continue;
        }
        if (format != "pgm") {
            std::cout << "Testing format: " << format << " for " << halide_type_of<T>() << "x3\n";
            // pgm really only supports gray images.
            test_round_trip(color_buf, format);
        }
        if (format != "ppm") {
            std::cout << "Testing format: " << format << " for " << halide_type_of<T>() << "x1\n";
            // ppm really only supports RGB images.
            test_round_trip(luma_buf, format);
        }
    }
}

void test_mat_header() {
    // Test if the .mat file header writes the correct file size
    std::ostringstream o;
    Buffer<uint8_t> buf(15, 15);
    buf.fill(42);
    o << Internal::get_test_tmp_dir() << "test_mat_header.mat";
    std::string filename = o.str();
    Tools::save_image(buf, filename);
    std::ifstream fs(filename.c_str(), std::ifstream::binary);
    if (!fs) {
        std::cout << "Cannot read " << filename << "\n";
        exit(1);
    }
    fs.seekg(0, fs.end);
    // .mat file begins with a 128 bytes header and a 8 bytes
    // matrix tag, the second byte of the matrix describe
    // the size of the rest of the file
    uint32_t file_size = uint32_t((int)fs.tellg() - 128 - 8);
    fs.seekg(128 + 4, fs.beg);
    uint32_t stored_file_size = 0;
    fs.read((char *)&stored_file_size, 4);
    fs.close();
    if (file_size != stored_file_size) {
        std::cout << "Wrong file size written for " << filename << ". Expected " << file_size << ", got" << stored_file_size << "\n";
        exit(1);
    }
}

int main(int argc, char **argv) {
    do_test<int8_t>();
    do_test<int16_t>();
    do_test<int32_t>();
    do_test<int64_t>();
    do_test<uint8_t>();
    do_test<uint16_t>();
    do_test<uint32_t>();
    do_test<uint64_t>();
    do_test<float>();
#ifdef HALIDE_CPP_COMPILER_HAS_FLOAT16
    do_test<_Float16>();
#endif
    do_test<double>();
    test_mat_header();
    printf("Success!\n");
    return 0;
}