File: inline_reduction.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (195 lines) | stat: -rw-r--r-- 7,294 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#include "Halide.h"
#include <algorithm>
#include <stdio.h>

using namespace Halide;

int main(int argc, char **argv) {
    // Compute the variance of a 3x3 patch about each pixel
    RDom r(-1, 3, -1, 3);

    // Test a complex summation
    Func input;
    Var x, y, z;
    input(x, y) = cast<float>(x * y + 1);

    Func local_variance;
    Expr input_val = input(x + r.x, y + r.y);
    Expr local_mean = sum(input_val) / 9.0f;
    local_variance(x, y) = sum(input_val * input_val) / 81.0f - local_mean * local_mean;

    Buffer<float> result = local_variance.realize({10, 10});

    for (int y = 0; y < 10; y++) {
        for (int x = 0; x < 10; x++) {
            float local_mean = 0;
            float local_variance = 0;
            for (int rx = -1; rx < 2; rx++) {
                for (int ry = -1; ry < 2; ry++) {
                    float val = (x + rx) * (y + ry) + 1.0f;
                    local_mean += val;
                    local_variance += val * val;
                }
            }
            local_mean /= 9.0f;
            float correct = local_variance / 81.0f - local_mean * local_mean;
            float r = result(x, y);
            float delta = correct - r;
            if (delta < -0.001 || delta > 0.001) {
                printf("result(%d, %d) was %f instead of %f\n", x, y, r, correct);
                return 1;
            }
        }
    }

    // Test the other reductions.
    Func local_product, local_max, local_min;
    local_product(x, y) = product(input_val);
    local_max(x, y) = maximum(input_val);
    local_min(x, y) = minimum(input_val);

    // Try a separable form of minimum too, so we test two reductions
    // in one pipeline. Use a user-provided Func for one of them and
    // unroll the reduction domain.
    Func min_x, min_y;
    RDom kx(-1, 3), ky(-1, 3);
    Func min_y_inner;
    min_x(x, y) = minimum(input(x + kx, y));
    min_y(x, y) = minimum(min_x(x, y + ky), min_y_inner);

    // Vectorize them all, to make life more interesting.
    local_product.vectorize(x, 4);
    local_max.vectorize(x, 4);
    local_min.vectorize(x, 4);
    min_y.vectorize(x, 4);

    // This would fail if the provided Func went unused.
    min_y_inner.update().unroll(ky);

    Buffer<float> prod_im = local_product.realize({10, 10});
    Buffer<float> max_im = local_max.realize({10, 10});
    Buffer<float> min_im = local_min.realize({10, 10});
    Buffer<float> min_im_separable = min_y.realize({10, 10});

    for (int y = 0; y < 10; y++) {
        for (int x = 0; x < 10; x++) {
            float correct_prod = 1.0f;
            float correct_min = 1e10f;
            float correct_max = -1e10f;
            for (int rx = -1; rx < 2; rx++) {
                for (int ry = -1; ry < 2; ry++) {
                    float val = (x + rx) * (y + ry) + 1.0f;
                    correct_prod *= val;
                    correct_min = std::min(correct_min, val);
                    correct_max = std::max(correct_max, val);
                }
            }

            float delta;
            delta = (correct_prod + 10) / (prod_im(x, y) + 10);
            if (delta < 0.99 || delta > 1.01) {
                printf("prod_im(%d, %d) = %f instead of %f\n", x, y, prod_im(x, y), correct_prod);
                return 1;
            }

            delta = correct_min - min_im(x, y);
            if (delta < -0.001 || delta > 0.001) {
                printf("min_im(%d, %d) = %f instead of %f\n", x, y, min_im(x, y), correct_min);
                return 1;
            }

            delta = correct_min - min_im_separable(x, y);
            if (delta < -0.001 || delta > 0.001) {
                printf("min_im(%d, %d) = %f instead of %f\n", x, y, min_im_separable(x, y), correct_min);
                return 1;
            }

            delta = correct_max - max_im(x, y);
            if (delta < -0.001 || delta > 0.001) {
                printf("max_im(%d, %d) = %f instead of %f\n", x, y, max_im(x, y), correct_max);
                return 1;
            }
        }
    }

    // Verify that all inline reductions compile with implicit argument syntax.
    Buffer<float> input_3d = lambda(x, y, z, x * 100.0f + y * 10.0f + ((z + 5 % 10))).realize({10, 10, 10});
    RDom all_z(input_3d.min(2), input_3d.extent(2));

    Func sum_implicit_inner, sum_implicit;
    sum_implicit(_) = sum(input_3d(_, all_z), sum_implicit_inner);
    Buffer<float> sum_implicit_im = sum_implicit.realize({10, 10});

    // The inner Func ends with with _0, _1, etc as its free vars.
    auto args = sum_implicit_inner.args();
    if (args.size() != 2 ||
        args[0].name() != Var(_0).name() ||
        args[1].name() != Var(_1).name()) {
        printf("sum_implicit_inner has the wrong args\n");
        return 1;
    }

    Func product_implicit;
    product_implicit(_) = product(input_3d(_, all_z));
    Buffer<float> product_implicit_im = product_implicit.realize({10, 10});

    Func min_implicit;
    min_implicit(_) = minimum(input_3d(_, all_z));
    Buffer<float> min_implicit_im = min_implicit.realize({10, 10});

    Func max_implicit;
    max_implicit(_, y) = maximum(input_3d(_, y, all_z));
    Buffer<float> max_implicit_im = max_implicit.realize({10, 10});

    Func argmin_implicit;
    argmin_implicit(_) = argmin(input_3d(_, all_z))[0];
    Buffer<int32_t> argmin_implicit_im = argmin_implicit.realize({10, 10});

    Func argmax_implicit;
    argmax_implicit(x, _) = argmax(input_3d(x, _, all_z))[0];
    Buffer<int32_t> argmax_implicit_im = argmax_implicit.realize({10, 10});

    // Verify that the min of negative floats and doubles is correct
    // (this used to be buggy due to the minimum float being the
    // smallest positive float instead of the smallest float).
    float result_f32 = evaluate<float>(minimum(RDom(0, 11) * -0.5f));
    if (result_f32 != -5.0f) {
        printf("minimum is %f instead of -5.0f\n", result_f32);
        return 1;
    }

    double result_f64 = evaluate<double>(minimum(RDom(0, 11) * cast<double>(-0.5f)));
    if (result_f64 != -5.0) {
        printf("minimum is %f instead of -5.0\n", result_f64);
        return 1;
    }

    // Check that min of a bunch of infinities is infinity.
    // Be sure to use strict_float() so that LLVM doesn't optimize away
    // the infinities.
    const float inf_f32 = std::numeric_limits<float>::infinity();
    const double inf_f64 = std::numeric_limits<double>::infinity();
    result_f32 = evaluate<float>(minimum(strict_float(RDom(1, 10) * inf_f32)));
    if (result_f32 != inf_f32) {
        printf("minimum is %f instead of infinity\n", result_f32);
        return 1;
    }
    result_f64 = evaluate<double>(minimum(strict_float(RDom(1, 10) * Expr(inf_f64))));
    if (result_f64 != inf_f64) {
        printf("minimum is %f instead of infinity\n", result_f64);
        return 1;
    }
    result_f32 = evaluate<float>(maximum(strict_float(RDom(1, 10) * -inf_f32)));
    if (result_f32 != -inf_f32) {
        printf("maximum is %f instead of -infinity\n", result_f32);
        return 1;
    }
    result_f64 = evaluate<double>(maximum(strict_float(RDom(1, 10) * Expr(-inf_f64))));
    if (result_f64 != -inf_f64) {
        printf("maximum is %f instead of -infinity\n", result_f64);
        return 1;
    }

    printf("Success!\n");
    return 0;
}