File: interpreter.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (204 lines) | stat: -rw-r--r-- 6,841 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include "Halide.h"

using namespace Halide;

int main(int argc, char **argv) {

    // TODO(#5738): remove after winbots are upgraded
    Target target = get_jit_target_from_environment();
    if (target.os == Target::Windows &&
        (target.has_feature(Target::OpenCL) ||
         target.has_feature(Target::D3D12Compute))) {
        printf("[SKIP] workaround for issue #5738\n");
        return 0;
    }

    if (target.has_feature(Target::Vulkan)) {
        printf("[SKIP] Skipping test for Vulkan (which doesn't support dynamically allocated shared mem)!\n");
        return 0;
    }

    // Workaround for https://github.com/halide/Halide/issues/7420
    if (target.has_feature(Target::WebGPU)) {
        printf("[SKIP] workaround for issue #7420\n");
        return 0;
    }

    // This test demonstrates a trick for writing interpreters in
    // Halide, and as a side-effect tests our ability to correctly
    // emit switch statements.

    // We'll define a mini arithmetic language to evaluate the same
    // arbitrary expression at every pixel, with the expression
    // provided by a sort of bytecode input to the pipeline. The
    // expression can include transcendentals, which would be
    // expensive if evaluated, so a big select tree is a bad idea.

    // We'll use SSA form. Every op in the expression language will
    // have two integer args indicating which prior values serve as
    // inputs, and one immediate arg. The single output of each op
    // just gets appended to the end of working memory. Working memory
    // is initialized to a 3x3 stencil footprint pulled from the
    // input. The amount of working memory required is thus just the
    // number of ops in the program plus 9, and the output of the
    // program is whatever gets left at the end of working memory.

    ImageParam program(Int(32), 2);

    ImageParam input(UInt(8), 2);

    Var x, y, u;

    // Working memory is initially undefined. We'll use int32 for working values.
    Func scratch;
    scratch(x, y, u) = undef<int32_t>();

    // Populate the start of working memory with a 3x3 stencil.
    RDom load_input(0, 3, 0, 3);
    scratch(x, y, load_input.x + load_input.y * 3) =
        cast<int>(input(x + load_input.x - 1, y + load_input.y - 1));

    // Then perform the ops specified by the program. This will be a
    // 2D RDom over the program. At every program instruction (the
    // outer loop) we'll evaluate every possible op (the inner loop),
    // but skip all but the correct one using a where clause. This
    // compiles to a switch statement.
    const int num_ops = 6;
    RDom r(0, num_ops, 0, program.dim(1).extent());

    Expr op = program(0, r.y);
    Expr arg1 = program(1, r.y);  // refers to an existing value
    Expr arg2 = program(2, r.y);  // refers to an existing value
    Expr arg3 = program(3, r.y);  // An immediate constant

    // Load the two inputs. If you trust the input program, replace
    // clamp with unsafe_promise_clamped. The range of valid inputs
    // locations is [0...8] when r.y is zero (the input 3x3 stencil),
    // and increases by one each iteration thereafter.

    Expr input1 = scratch(x, y, clamp(arg1, 0, r.y + 8));
    Expr input2 = scratch(x, y, clamp(arg2, 0, r.y + 8));

    std::vector<Expr> possible_results{
        arg3,  // Push a constant
        input1 + input2,
        input1 - input2,
        input1 * input2,
        input1 / input2,
        cast<int>(floor(sqrt(input1)))};

    // Give ourselves convenient names for these ops in the list to
    // use in the tests below.
    enum Op {
        Const = 0,
        Add,
        Sub,
        Mul,
        Div,
        Sqrt,
    };

    assert(num_ops == (int)possible_results.size());

    r.where(r.x == op);
    scratch(x, y, r.y + 9) = mux(r.x, possible_results);

    Func output;
    output(x, y) = cast<uint8_t>(scratch(x, y, 8 + program.dim(1).extent()));

    Target t = get_jit_target_from_environment();

    // Unroll the loading of the input stencil
    scratch
        .update(0)
        .unroll(load_input.x)
        .unroll(load_input.y);

    // The loop over possible ops must be fully unrolled to turn into
    // a switch statement.
    scratch
        .update(1)
        .unroll(r.x);

    if (t.has_gpu_feature()) {
        // Compile to GPU, storing working memory in shared.
        Var xi, yi;
        output
            .gpu_tile(x, y, xi, yi, 16, 16);
        scratch
            .compute_at(output, x)
            .gpu_threads(x, y);
    } else {
        // Compute to CPU, vectorizing the entire interpreter.
        output.vectorize(x, 8).parallel(y);
    }

    output.compile_jit(t);

    // Run some sample programs on a noise input

    const int W = 128, H = 128;
    Buffer<uint8_t> in_buf(W + 2, H + 2);
    in_buf.set_min(-1, -1);
    std::mt19937 rng{0};
    in_buf.for_each_value([&](uint8_t &val) { val = (uint8_t)rng(); });
    in_buf.set_host_dirty();
    input.set(in_buf);

    Buffer<uint8_t> out_buf(W, H);

    {
        // (in(x + 1, y) - in(x - 1, y)) / 2;
        int program_src[3][4] = {{Sub, 5, 3, 0},
                                 {Const, 0, 0, 2},
                                 {Div, 9, 10, 0}};

        Buffer<int> program_buf(&program_src[0][0], 4, 3);
        program_buf.set_host_dirty();
        program.set(program_buf);

        output.realize(out_buf);
        out_buf.copy_to_host();

        for (int y = 0; y < H; y++) {
            for (int x = 0; x < W; x++) {
                uint8_t correct = (uint8_t)(((int)in_buf(x + 1, y) - in_buf(x - 1, y)) >> 1);
                if (out_buf(x, y) != correct) {
                    printf("out_buf(%d, %d) = %d instead of %d\n", x, y, out_buf(x, y), correct);
                    return -1;
                }
            }
        }
    }

    {
        // sqrt(in(x - 1, y - 1) ^ 2 + in(x + 1, y + 1) ^ 2)
        int program_src[4][4] = {{Mul, 0, 0, 0},
                                 {Mul, 8, 8, 0},
                                 {Add, 9, 10, 0},
                                 {Sqrt, 11, 0, 0}};

        const int W = 128, H = 128;

        Buffer<int> program_buf(&program_src[0][0], 4, 4);
        program_buf.set_host_dirty();
        program.set(program_buf);

        output.realize(out_buf);
        out_buf.copy_to_host();

        for (int y = 0; y < H; y++) {
            for (int x = 0; x < W; x++) {
                int a = in_buf(x - 1, y - 1);
                int b = in_buf(x + 1, y + 1);
                uint8_t correct = (uint8_t)((int)std::floor(std::sqrt(a * a + b * b)));
                if (out_buf(x, y) != correct) {
                    printf("out_buf(%d, %d) = %d instead of %d\n", x, y, out_buf(x, y), correct);
                    return -1;
                }
            }
        }
    }
    printf("Success!\n");
    return 0;
}