File: intrinsics.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (382 lines) | stat: -rw-r--r-- 18,676 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#include "Halide.h"

using namespace Halide;
using namespace Halide::ConciseCasts;
using namespace Halide::Internal;

Expr narrow(Expr a) {
    Type result_type = a.type().narrow();
    return Cast::make(result_type, std::move(a));
}

void check(Expr test, Expr expected, Type required_type) {
    // Some of the below tests assume the simplifier has run.
    test = simplify(test);

    // Make sure the pattern is robust to CSE. We only enforce this
    // for types with well-defined overflow for now.
    if (test.type().bits() < 32 || test.type().is_uint()) {
        auto bundle = [](const Expr &e) {
            return Call::make(e.type(), Call::bundle, {e, e}, Call::PureIntrinsic);
        };
        test = common_subexpression_elimination(bundle(test));
        expected = bundle(expected);
    }

    Expr result = substitute_in_all_lets(find_intrinsics(test));
    if (!equal(result, expected) || required_type != expected.type()) {
        std::cerr << "failure!\n";
        std::cerr << "test: " << test << "\n";
        std::cerr << "result: " << result << "\n";
        std::cerr << "expected: " << expected << "\n";
        abort();
    }
}

void check(Expr test, Expr expected) {
    return check(test, expected, expected.type());
}

template<typename T>
int64_t mul_shift_right(int64_t a, int64_t b, int q) {
    constexpr int64_t min_t = std::numeric_limits<T>::min();
    constexpr int64_t max_t = std::numeric_limits<T>::max();
    using W = std::conditional_t<min_t == 0, uint64_t, int64_t>;
    return std::min<int64_t>(std::max<int64_t>((W(a) * W(b)) >> q, min_t), max_t);
}

template<typename T>
int64_t rounding_mul_shift_right(int64_t a, int64_t b, int q) {
    const int64_t min_t = std::numeric_limits<T>::min();
    const int64_t max_t = std::numeric_limits<T>::max();
    using W = std::conditional_t<min_t == 0, uint64_t, int64_t>;
    return std::min<int64_t>(std::max<int64_t>((W(a) * W(b) + (W(1) << (q - 1))) >> q, min_t), max_t);
}

template<typename T>
void check_intrinsics_over_range() {
    const int64_t min_t = std::numeric_limits<T>::min();
    const int64_t max_t = std::numeric_limits<T>::max();
    const int N = 64;
    Type halide_t = type_of<T>();

    const int t_bits = halide_t.bits();

    for (int i = 0; i < N; i++) {
        int64_t a = min_t + ((max_t - min_t) * i) / N;
        for (int j = 0; j < N; j++) {
            int64_t b = min_t + ((max_t - min_t) * j) / N;
            Expr a_expr = make_const(halide_t, a);
            Expr b_expr = make_const(halide_t, b);
            std::pair<Expr, int64_t> intrinsics_with_reference_answer[] = {
                {saturating_add(a_expr, b_expr), std::min(std::max(a + b, min_t), max_t)},
                {saturating_sub(a_expr, b_expr), std::min(std::max(a - b, min_t), max_t)},
                {halving_add(a_expr, b_expr), (a + b) >> 1},
                {rounding_halving_add(a_expr, b_expr), (a + b + 1) >> 1},
                {halving_sub(a_expr, b_expr), (a - b) >> 1},
            };
            for (const auto &p : intrinsics_with_reference_answer) {
                Expr test = lower_intrinsics(p.first);
                Expr result = simplify(test);
                if (!can_prove(result == make_const(halide_t, p.second))) {
                    std::cerr << "failure!\n";
                    std::cerr << "test: " << p.first << "\n";
                    std::cerr << "result: " << result << "\n";
                    std::cerr << "expected: " << p.second << "\n";
                    abort();
                }
            }

            std::pair<Expr, int64_t> multiply_intrinsics_with_reference_answer[] = {
                {mul_shift_right(a_expr, b_expr, t_bits - 1), mul_shift_right<T>(a, b, t_bits - 1)},
                {mul_shift_right(a_expr, b_expr, t_bits), mul_shift_right<T>(a, b, t_bits)},
                {rounding_mul_shift_right(a_expr, b_expr, t_bits - 1), rounding_mul_shift_right<T>(a, b, t_bits - 1)},
                {rounding_mul_shift_right(a_expr, b_expr, t_bits), rounding_mul_shift_right<T>(a, b, t_bits)},
            };
            for (const auto &p : multiply_intrinsics_with_reference_answer) {
                if (a < std::numeric_limits<int>::min() || a > std::numeric_limits<int>::max() ||
                    b < std::numeric_limits<int>::min() || b > std::numeric_limits<int>::max()) {
                    // Skip tests that would overflow the reference code.
                    continue;
                }
                Expr test = lower_intrinsics(p.first);
                Expr result = simplify(test);
                if (!can_prove(result == make_const(halide_t, p.second))) {
                    std::cerr << "failure!\n";
                    std::cerr << "test: " << p.first << "\n";
                    std::cerr << "result: " << result << "\n";
                    std::cerr << "expected: " << p.second << "\n";
                    abort();
                }
            }
        }
    }
}

Var x;
Expr make_leaf(Type t, const char *name) {
    return Load::make(t, name, Ramp::make(x, 1, t.lanes()),
                      Buffer<>{}, Parameter{},
                      const_true(t.lanes()), ModulusRemainder{});
}

int main(int argc, char **argv) {
    Expr i1x = make_leaf(Int(1, 4), "i1x");
    Expr i1y = make_leaf(Int(1, 4), "i1y");
    Expr i8x = make_leaf(Int(8, 4), "i8x");
    Expr i8y = make_leaf(Int(8, 4), "i8y");
    Expr i8z = make_leaf(Int(8, 4), "i8w");
    Expr i8w = make_leaf(Int(8, 4), "i8z");
    Expr u8x = make_leaf(UInt(8, 4), "u8x");
    Expr u8y = make_leaf(UInt(8, 4), "u8y");
    Expr u8z = make_leaf(UInt(8, 4), "u8w");
    Expr u8w = make_leaf(UInt(8, 4), "u8z");
    Expr u16x = make_leaf(UInt(16, 4), "u16x");
    Expr u32x = make_leaf(UInt(32, 4), "u32x");
    Expr u32y = make_leaf(UInt(32, 4), "u32y");
    Expr i32x = make_leaf(Int(32, 4), "i32x");
    Expr i32y = make_leaf(Int(32, 4), "i32y");
    Expr f16x = make_leaf(Float(16, 4), "f16x");
    Expr f16y = make_leaf(Float(16, 4), "f16y");
    Expr f32x = make_leaf(Float(32, 4), "f32x");
    Expr f32y = make_leaf(Float(32, 4), "f32y");

    // Check powers of two multiply/divide rewritten to shifts.
    check(i8x * 2, i8x << 1);
    check(u8x * 4, u8x << 2);
    check(i8x / 8, i8x >> 3);
    check(u8x / 4, u8x >> 2);

    check(i16(i8x) * 4096, widening_shift_left(i8x, 12));
    check(u16(u8x) * 128, widening_shift_left(u8x, 7));
    // check(u32(u8x) * 256, u32(widening_shift_left(u8x, u8(8))));

    // Check widening arithmetic
    check(i8(i1x) + i1y, widening_add(i1x, i1y));
    check(i16(i8x) + i8y, widening_add(i8x, i8y));
    check(u16(u8x) + u8y, widening_add(u8x, u8y));
    check(i16(u8x) + u8y, i16(widening_add(u8x, u8y)));
    check(f32(f16x) + f32(f16y), widening_add(f16x, f16y));

    check(i8(i1x) - i1y, widening_sub(i1x, i1y));
    check(i16(i8x) - i8y, widening_sub(i8x, i8y));
    check(i16(u8x) - u8y, widening_sub(u8x, u8y));
    check(f32(f16x) - f32(f16y), widening_sub(f16x, f16y));

    check(i8(i1x) * i1y, widening_mul(i1x, i1y));
    check(i16(i8x) * i8y, widening_mul(i8x, i8y));
    check(u16(u8x) * u8y, widening_mul(u8x, u8y));
    check(i32(i8x) * i8y, i32(widening_mul(i8x, i8y)));
    check(u32(u8x) * u8y, u32(widening_mul(u8x, u8y)));
    check(f32(f16x) * f32(f16y), widening_mul(f16x, f16y));

    // Widening mul allows mixed signs
    check(i16(i8x) * u8y, widening_mul(i8x, u8y), Int(16, 4));
    check(i32(i8x) * u8y, i32(widening_mul(i8x, u8y)));

    // Excessive widening should be moved outside the arithmetic.
    check(widening_mul(i16(i8x), i16(i8y)), i32(widening_mul(i8x, i8y)));
    check(widening_mul(u16(u8x), u16(u8y)), u32(widening_mul(u8x, u8y)));
    check(widening_mul(i16(i8x), i16(u8y)), i32(widening_mul(i8x, u8y)));
    check(widening_mul(i16(u8x), i16(i8y)), i32(widening_mul(u8x, i8y)));
    check(widening_mul(f32(f16x), f32(f16y)), f64(widening_mul(f16x, f16y)));

    check(widening_add(i16(i8x), i16(i8y)), i32(widening_add(i8x, i8y)));
    check(widening_add(u16(u8x), u16(u8y)), u32(widening_add(u8x, u8y)));
    check(widening_add(i16(u8x), i16(u8y)), i32(widening_add(u8x, u8y)));
    check(widening_add(f32(f16x), f32(f16y)), f64(widening_add(f16x, f16y)));

    check(widening_mul(i32(i8x), i32(i8y)), i64(widening_mul(i8x, i8y)));
    check(widening_mul(u32(u8x), u32(u8y)), u64(widening_mul(u8x, u8y)));
    check(widening_mul(i32(i8x), i32(u8y)), i64(widening_mul(i8x, u8y)));
    check(widening_mul(i32(u8x), i32(i8y)), i64(widening_mul(u8x, i8y)));

    check(widening_add(i32(i8x), i32(i8y)), i64(widening_add(i8x, i8y)));
    check(widening_add(u32(u8x), u32(u8y)), u64(widening_add(u8x, u8y)));
    check(widening_add(i32(u8x), i32(u8y)), i64(widening_add(u8x, u8y)));

    // Tricky case.
    check(i32(u8x) + 1, i32(widening_add(u8x, u8(1))));

    // Check saturating arithmetic
    check(i8_sat(i16(i8x) + i8y), saturating_add(i8x, i8y));
    check(u8_sat(u16(u8x) + u8y), saturating_add(u8x, u8y));
    check(u8(min(u16(u8x) + u16(u8y), 255)), saturating_add(u8x, u8y));
    check(u8(min(i16(u8x) + i16(u8y), 255)), saturating_add(u8x, u8y));

    check(i8_sat(i16(i8x) - i8y), saturating_sub(i8x, i8y));
    check(u8(max(i16(u8x) - i16(u8y), 0)), saturating_sub(u8x, u8y));

    // Check halving arithmetic
    check(i8((i16(i8x) + i8y) / 2), halving_add(i8x, i8y));
    check(u8((u16(u8x) + u8y) / 2), halving_add(u8x, u8y));
    check(i8(widening_add(i8x, i8y) / 2), halving_add(i8x, i8y));
    check(u8(widening_add(u8x, u8y) / 2), halving_add(u8x, u8y));
    check((i32x + i32y) / 2, halving_add(i32x, i32y));
    check((f32x + f32y) / 2, (f32x + f32y) * 0.5f);

    check(i8((i16(i8x) - i8y) / 2), halving_sub(i8x, i8y));
    check(u8((u16(u8x) - u8y) / 2), halving_sub(u8x, u8y));
    check(i8(widening_sub(i8x, i8y) / 2), halving_sub(i8x, i8y));
    check(u8(widening_sub(u8x, u8y) / 2), halving_sub(u8x, u8y));
    check((i32x - i32y) / 2, halving_sub(i32x, i32y));
    check((f32x - f32y) / 2, (f32x - f32y) * 0.5f);

    check(i8((i16(i8x) + i8y + 1) / 2), rounding_halving_add(i8x, i8y));
    check(u8((u16(u8x) + u8y + 1) / 2), rounding_halving_add(u8x, u8y));
    check(i8((widening_add(i8x, i8y) + 1) / 2), rounding_halving_add(i8x, i8y));
    check(u8((widening_add(u8x, u8y) + 1) / 2), rounding_halving_add(u8x, u8y));
    check((i32x + i32y + 1) / 2, rounding_halving_add(i32x, i32y));

    // Check absd
    check(abs(i16(i8x) - i16(i8y)), u16(absd(i8x, i8y)));
    check(abs(i16(u8x) - i16(u8y)), u16(absd(u8x, u8y)));
    check(abs(f16x - f16y), absd(f16x, f16y));
    check(abs(f32x - f32y), absd(f32x, f32y));
    check(abs(widening_sub(i8x, i8y)), u16(absd(i8x, i8y)));
    check(abs(widening_sub(u8x, u8y)), u16(absd(u8x, u8y)));
    check(abs(widening_sub(f16x, f16y)), f32(abs(f16x - f16y)));

    // Check rounding shifts
    // With constants
    check(narrow((i16(i8x) + 8) / 16), rounding_shift_right(i8x, 4));
    check(narrow(widening_add(i8x, i8(4)) / 8), rounding_shift_right(i8x, 3));
    check(i8(widening_add(i8x, i8(32)) / 64), rounding_shift_right(i8x, 6));
    check((i8x + i8(32)) / 64, (i8x + i8(32)) >> 6);  // Not a rounding_shift_right due to overflow.
    check((i32x + 16) / 32, rounding_shift_right(i32x, 5));

    // rounding_right_shift of a widening add can be strength-reduced
    check(narrow((u16(u8x) + 15) >> 4), rounding_halving_add(u8x, u8(14)) >> u8(3));
    check(narrow((u32(u16x) + 15) >> 4), rounding_halving_add(u16x, u16(14)) >> u16(3));

    // But not if the constant can't fit in the narrower type
    check(narrow((u16(u8x) + 500) >> 4), narrow((widen_right_add(cast<uint16_t>(500), u8x)) >> 4));

    check((u64(u32x) + 8) / 16, u64(rounding_shift_right(u32x, 4)));
    check(u16(min((u64(u32x) + 8) / 16, 65535)), u16_sat(rounding_shift_right(u32x, 4)));

    // And with variable shifts. These won't match unless Halide can statically
    // prove it's not an out-of-range shift.
    Expr u8yc = Min::make(u8y, make_const(u8y.type(), 7));
    Expr i8yc = Max::make(Min::make(i8y, make_const(i8y.type(), 7)), make_const(i8y.type(), -7));
    check(i8(widening_add(i8x, (i8(1) << u8yc) / 2) >> u8yc), rounding_shift_right(i8x, u8yc));
    check((i32x + (i32(1) << u32y) / 2) >> u32y, rounding_shift_right(i32x, u32y));
    check(i8(widening_add(i8x, (i8(1) << max(i8yc, 0)) / 2) >> i8yc), rounding_shift_right(i8x, i8yc));
    check((i32x + (i32(1) << max(i32y, 0)) / 2) >> i32y, rounding_shift_right(i32x, i32y));
    check(i8(widening_add(i8x, (i8(1) >> min(i8yc, 0)) / 2) << i8yc), rounding_shift_left(i8x, i8yc));
    check((i32x + (i32(1) >> min(i32y, 0)) / 2) << i32y, rounding_shift_left(i32x, i32y));
    check(i8(widening_add(i8x, (i8(1) << -min(i8yc, 0)) / 2) << i8yc), rounding_shift_left(i8x, i8yc));
    check((i32x + (i32(1) << -min(i32y, 0)) / 2) << i32y, rounding_shift_left(i32x, i32y));
    check((i32x + (i32(1) << max(-i32y, 0)) / 2) << i32y, rounding_shift_left(i32x, i32y));

    // Test combinations of multiplies and adds with widening
    // Same sign:
    check(i16(i8x) * i8y + i16(i8z) * i8w, widening_mul(i8x, i8y) + widening_mul(i8z, i8w));
    check(u16(u8x) * u8y + u16(u8z) * u8w, widening_mul(u8x, u8y) + widening_mul(u8z, u8w));
    check(i32(i8x) * i8y + i32(i8z) * i8w, widening_add(widening_mul(i8x, i8y), widening_mul(i8z, i8w)));
    check(u32(u8x) * u8y + u32(u8z) * u8w, widening_add(widening_mul(u8x, u8y), widening_mul(u8z, u8w)), UInt(32, 4));

    // Mixed signs:
    check(i16(u8x) * i8y + i16(u8z) * i8w, widening_mul(u8x, i8y) + widening_mul(u8z, i8w), Int(16, 4));

    // Widening multiply-adds involving constants should be rewritten to adds whenever possible:
    check(i16(i8x) * 3 + i16(i8y) * 5, widening_mul(i8x, i8(3)) + widening_mul(i8y, i8(5)));
    check(i16(i8x) * 5 - i16(i8y) * 127, widening_mul(i8x, i8(5)) + widening_mul(i8y, i8(-127)));
    check(i16(u8x) * 3 - i16(u8y) * 7, widening_mul(u8x, i8(3)) + widening_mul(u8y, i8(-7)));
    check(i32(i8x) * 3 + i32(i8y) * 5, widening_add(widening_mul(i8x, i8(3)), widening_mul(i8y, i8(5))));
    check(i32(i8x) * 5 - i32(i8y) * 3, widening_add(widening_mul(i8x, i8(5)), widening_mul(i8y, i8(-3))));
    check(i32(u8x) * 7 - i32(u8y) * 6, widening_add(widening_mul(u8x, i8(7)), widening_mul(u8y, i8(-6))));

    check((i16(u8x) * 4 + i16(u8y)) * 3, widening_mul(u8x, i8(12)) + widening_mul(u8y, i8(3)));
    check((i16(i8y) * 7 + i16(i8x)) * 5, widening_mul(i8y, i8(35)) + widening_mul(i8x, i8(5)));
    check((i16(u8x) * 4 - i16(u8y)) * 3, widening_mul(u8x, i8(12)) + widening_mul(u8y, i8(-3)));
    check((i16(i8x) - i16(i8y) * 7) * 5, widening_mul(i8x, i8(5)) + widening_mul(i8y, i8(-35)));

    check((u16(u8x) + u16(u8y)) * 2, widening_shift_left(u8x, 1) + widening_shift_left(u8y, 1));
    check((u16(u8x) - u16(u8y)) * 2, widening_shift_left(u8x, 1) - widening_shift_left(u8y, 1));
    check((u16(u8x) * 4 + u16(u8y)) * 3, widening_mul(u8x, u8(12)) + widening_mul(u8y, u8(3)));
    check((u16(u8y) * 7 + u16(u8x)) * 5, widening_mul(u8y, u8(35)) + widening_mul(u8x, u8(5)));
    // TODO: Should these be rewritten to widening muls with mixed signs?
    check((u16(u8x) * 4 - u16(u8y)) * 3, widening_mul(u8x, u8(12)) - widening_mul(u8y, u8(3)));
    check((u16(u8x) - u16(u8y) * 7) * 5, widening_mul(u8x, u8(5)) - widening_mul(u8y, u8(35)));

    // Quantized multiplication.
    check(i8_sat(i16(i8x) * i16(i8y) >> 7), mul_shift_right(i8x, i8y, 7));
    check(i8(min(i16(i8x) * i16(i8y) >> 7, 127)), mul_shift_right(i8x, i8y, 7));
    check(i8_sat(i16(i8x) * i16(i8y) >> 8), mul_shift_right(i8x, i8y, 8));
    check(u8_sat(u16(u8x) * u16(u8y) >> 8), mul_shift_right(u8x, u8y, 8));
    check(i8(i16(i8x) * i16(i8y) >> 8), mul_shift_right(i8x, i8y, 8));
    check(u8(u16(u8x) * u16(u8y) >> 8), mul_shift_right(u8x, u8y, 8));

    // Multiplication of mixed-width integers
    check(u16(u32(u16x) * u32(u8y) >> 8), mul_shift_right(u16x, u16(u8y), 8));

    // Multiplication of mixed-sign integers shouldn't use mul_shift_right
    check(i32(i64(u32x) * i64(i32y) >> 32), i32(widening_mul(u32x, i32y) >> 32));

    check(i8_sat(rounding_shift_right(i16(i8x) * i16(i8y), 7)), rounding_mul_shift_right(i8x, i8y, 7));
    check(i8(min(rounding_shift_right(i16(i8x) * i16(i8y), 7), 127)), rounding_mul_shift_right(i8x, i8y, 7));
    check(i8_sat(rounding_shift_right(i16(i8x) * i16(i8y), 8)), rounding_mul_shift_right(i8x, i8y, 8));
    check(u8_sat(rounding_shift_right(u16(u8x) * u16(u8y), 8)), rounding_mul_shift_right(u8x, u8y, 8));
    check(i8(rounding_shift_right(i16(i8x) * i16(i8y), 8)), rounding_mul_shift_right(i8x, i8y, 8));
    check(u8(rounding_shift_right(u16(u8x) * u16(u8y), 8)), rounding_mul_shift_right(u8x, u8y, 8));

    check_intrinsics_over_range<int8_t>();
    check_intrinsics_over_range<uint8_t>();
    check_intrinsics_over_range<int16_t>();
    check_intrinsics_over_range<uint16_t>();
    check_intrinsics_over_range<int32_t>();
    check_intrinsics_over_range<uint32_t>();

    // The intrinsics-matching pass substitutes in widening lets. At
    // one point this caused a missing symbol bug for the code below
    // due to a subexpression not getting mutated.
    {
        Func f, g;
        Var x;
        Param<uint8_t> d;

        f(x) = cast<uint8_t>(x);
        f.compute_root();

        // We want a widening let that uses a load that uses a widening let

        // Widen it, but in a way that won't result in the cast being
        // substituted in by the simplifier. We want it to only be
        // substituted when we reach the intrinsics-matching pass.
        Expr widened = absd(cast<uint16_t>(f(x)), cast<uint16_t>(d));

        // Now use it in a load, twice, so that CSE pulls it out as a let.
        Expr lut = f(cast<int32_t>(widened * widened));

        // Now use that in another widening op...
        Expr widened2 = absd(cast<uint16_t>(lut), cast<uint16_t>(d));

        // ...which we will use twice so that CSE makes it another let.
        g(x) = widened2 * widened2;

        g.vectorize(x, 8);

        // This used to crash with a missing symbol error
        g.compile_jit();
    }

    // Rounding shifts by extreme values, when lowered, used to have the
    // potential to overflow and turn into out-of-range shifts. The simplifier
    // detected this and injected a signed_integer_overflow intrinsic, which
    // then threw an error in codegen, even though the rounding shift calls are
    // well-defined.
    {
        Func f, g;

        f(x) = cast<uint8_t>(x);
        f.compute_root();

        g(x) = rounding_shift_right(f(x), 0) + u8(rounding_shift_left(u16(f(x)), 11));

        g.compile_jit();
    }

    printf("Success!\n");
    return 0;
}