1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
#include "Halide.h"
using namespace Halide;
using namespace Halide::ConciseCasts;
using namespace Halide::Internal;
Expr narrow(Expr a) {
Type result_type = a.type().narrow();
return Cast::make(result_type, std::move(a));
}
void check(Expr test, Expr expected, Type required_type) {
// Some of the below tests assume the simplifier has run.
test = simplify(test);
// Make sure the pattern is robust to CSE. We only enforce this
// for types with well-defined overflow for now.
if (test.type().bits() < 32 || test.type().is_uint()) {
auto bundle = [](const Expr &e) {
return Call::make(e.type(), Call::bundle, {e, e}, Call::PureIntrinsic);
};
test = common_subexpression_elimination(bundle(test));
expected = bundle(expected);
}
Expr result = substitute_in_all_lets(find_intrinsics(test));
if (!equal(result, expected) || required_type != expected.type()) {
std::cerr << "failure!\n";
std::cerr << "test: " << test << "\n";
std::cerr << "result: " << result << "\n";
std::cerr << "expected: " << expected << "\n";
abort();
}
}
void check(Expr test, Expr expected) {
return check(test, expected, expected.type());
}
template<typename T>
int64_t mul_shift_right(int64_t a, int64_t b, int q) {
constexpr int64_t min_t = std::numeric_limits<T>::min();
constexpr int64_t max_t = std::numeric_limits<T>::max();
using W = std::conditional_t<min_t == 0, uint64_t, int64_t>;
return std::min<int64_t>(std::max<int64_t>((W(a) * W(b)) >> q, min_t), max_t);
}
template<typename T>
int64_t rounding_mul_shift_right(int64_t a, int64_t b, int q) {
const int64_t min_t = std::numeric_limits<T>::min();
const int64_t max_t = std::numeric_limits<T>::max();
using W = std::conditional_t<min_t == 0, uint64_t, int64_t>;
return std::min<int64_t>(std::max<int64_t>((W(a) * W(b) + (W(1) << (q - 1))) >> q, min_t), max_t);
}
template<typename T>
void check_intrinsics_over_range() {
const int64_t min_t = std::numeric_limits<T>::min();
const int64_t max_t = std::numeric_limits<T>::max();
const int N = 64;
Type halide_t = type_of<T>();
const int t_bits = halide_t.bits();
for (int i = 0; i < N; i++) {
int64_t a = min_t + ((max_t - min_t) * i) / N;
for (int j = 0; j < N; j++) {
int64_t b = min_t + ((max_t - min_t) * j) / N;
Expr a_expr = make_const(halide_t, a);
Expr b_expr = make_const(halide_t, b);
std::pair<Expr, int64_t> intrinsics_with_reference_answer[] = {
{saturating_add(a_expr, b_expr), std::min(std::max(a + b, min_t), max_t)},
{saturating_sub(a_expr, b_expr), std::min(std::max(a - b, min_t), max_t)},
{halving_add(a_expr, b_expr), (a + b) >> 1},
{rounding_halving_add(a_expr, b_expr), (a + b + 1) >> 1},
{halving_sub(a_expr, b_expr), (a - b) >> 1},
};
for (const auto &p : intrinsics_with_reference_answer) {
Expr test = lower_intrinsics(p.first);
Expr result = simplify(test);
if (!can_prove(result == make_const(halide_t, p.second))) {
std::cerr << "failure!\n";
std::cerr << "test: " << p.first << "\n";
std::cerr << "result: " << result << "\n";
std::cerr << "expected: " << p.second << "\n";
abort();
}
}
std::pair<Expr, int64_t> multiply_intrinsics_with_reference_answer[] = {
{mul_shift_right(a_expr, b_expr, t_bits - 1), mul_shift_right<T>(a, b, t_bits - 1)},
{mul_shift_right(a_expr, b_expr, t_bits), mul_shift_right<T>(a, b, t_bits)},
{rounding_mul_shift_right(a_expr, b_expr, t_bits - 1), rounding_mul_shift_right<T>(a, b, t_bits - 1)},
{rounding_mul_shift_right(a_expr, b_expr, t_bits), rounding_mul_shift_right<T>(a, b, t_bits)},
};
for (const auto &p : multiply_intrinsics_with_reference_answer) {
if (a < std::numeric_limits<int>::min() || a > std::numeric_limits<int>::max() ||
b < std::numeric_limits<int>::min() || b > std::numeric_limits<int>::max()) {
// Skip tests that would overflow the reference code.
continue;
}
Expr test = lower_intrinsics(p.first);
Expr result = simplify(test);
if (!can_prove(result == make_const(halide_t, p.second))) {
std::cerr << "failure!\n";
std::cerr << "test: " << p.first << "\n";
std::cerr << "result: " << result << "\n";
std::cerr << "expected: " << p.second << "\n";
abort();
}
}
}
}
}
Var x;
Expr make_leaf(Type t, const char *name) {
return Load::make(t, name, Ramp::make(x, 1, t.lanes()),
Buffer<>{}, Parameter{},
const_true(t.lanes()), ModulusRemainder{});
}
int main(int argc, char **argv) {
Expr i1x = make_leaf(Int(1, 4), "i1x");
Expr i1y = make_leaf(Int(1, 4), "i1y");
Expr i8x = make_leaf(Int(8, 4), "i8x");
Expr i8y = make_leaf(Int(8, 4), "i8y");
Expr i8z = make_leaf(Int(8, 4), "i8w");
Expr i8w = make_leaf(Int(8, 4), "i8z");
Expr u8x = make_leaf(UInt(8, 4), "u8x");
Expr u8y = make_leaf(UInt(8, 4), "u8y");
Expr u8z = make_leaf(UInt(8, 4), "u8w");
Expr u8w = make_leaf(UInt(8, 4), "u8z");
Expr u16x = make_leaf(UInt(16, 4), "u16x");
Expr u32x = make_leaf(UInt(32, 4), "u32x");
Expr u32y = make_leaf(UInt(32, 4), "u32y");
Expr i32x = make_leaf(Int(32, 4), "i32x");
Expr i32y = make_leaf(Int(32, 4), "i32y");
Expr f16x = make_leaf(Float(16, 4), "f16x");
Expr f16y = make_leaf(Float(16, 4), "f16y");
Expr f32x = make_leaf(Float(32, 4), "f32x");
Expr f32y = make_leaf(Float(32, 4), "f32y");
// Check powers of two multiply/divide rewritten to shifts.
check(i8x * 2, i8x << 1);
check(u8x * 4, u8x << 2);
check(i8x / 8, i8x >> 3);
check(u8x / 4, u8x >> 2);
check(i16(i8x) * 4096, widening_shift_left(i8x, 12));
check(u16(u8x) * 128, widening_shift_left(u8x, 7));
// check(u32(u8x) * 256, u32(widening_shift_left(u8x, u8(8))));
// Check widening arithmetic
check(i8(i1x) + i1y, widening_add(i1x, i1y));
check(i16(i8x) + i8y, widening_add(i8x, i8y));
check(u16(u8x) + u8y, widening_add(u8x, u8y));
check(i16(u8x) + u8y, i16(widening_add(u8x, u8y)));
check(f32(f16x) + f32(f16y), widening_add(f16x, f16y));
check(i8(i1x) - i1y, widening_sub(i1x, i1y));
check(i16(i8x) - i8y, widening_sub(i8x, i8y));
check(i16(u8x) - u8y, widening_sub(u8x, u8y));
check(f32(f16x) - f32(f16y), widening_sub(f16x, f16y));
check(i8(i1x) * i1y, widening_mul(i1x, i1y));
check(i16(i8x) * i8y, widening_mul(i8x, i8y));
check(u16(u8x) * u8y, widening_mul(u8x, u8y));
check(i32(i8x) * i8y, i32(widening_mul(i8x, i8y)));
check(u32(u8x) * u8y, u32(widening_mul(u8x, u8y)));
check(f32(f16x) * f32(f16y), widening_mul(f16x, f16y));
// Widening mul allows mixed signs
check(i16(i8x) * u8y, widening_mul(i8x, u8y), Int(16, 4));
check(i32(i8x) * u8y, i32(widening_mul(i8x, u8y)));
// Excessive widening should be moved outside the arithmetic.
check(widening_mul(i16(i8x), i16(i8y)), i32(widening_mul(i8x, i8y)));
check(widening_mul(u16(u8x), u16(u8y)), u32(widening_mul(u8x, u8y)));
check(widening_mul(i16(i8x), i16(u8y)), i32(widening_mul(i8x, u8y)));
check(widening_mul(i16(u8x), i16(i8y)), i32(widening_mul(u8x, i8y)));
check(widening_mul(f32(f16x), f32(f16y)), f64(widening_mul(f16x, f16y)));
check(widening_add(i16(i8x), i16(i8y)), i32(widening_add(i8x, i8y)));
check(widening_add(u16(u8x), u16(u8y)), u32(widening_add(u8x, u8y)));
check(widening_add(i16(u8x), i16(u8y)), i32(widening_add(u8x, u8y)));
check(widening_add(f32(f16x), f32(f16y)), f64(widening_add(f16x, f16y)));
check(widening_mul(i32(i8x), i32(i8y)), i64(widening_mul(i8x, i8y)));
check(widening_mul(u32(u8x), u32(u8y)), u64(widening_mul(u8x, u8y)));
check(widening_mul(i32(i8x), i32(u8y)), i64(widening_mul(i8x, u8y)));
check(widening_mul(i32(u8x), i32(i8y)), i64(widening_mul(u8x, i8y)));
check(widening_add(i32(i8x), i32(i8y)), i64(widening_add(i8x, i8y)));
check(widening_add(u32(u8x), u32(u8y)), u64(widening_add(u8x, u8y)));
check(widening_add(i32(u8x), i32(u8y)), i64(widening_add(u8x, u8y)));
// Tricky case.
check(i32(u8x) + 1, i32(widening_add(u8x, u8(1))));
// Check saturating arithmetic
check(i8_sat(i16(i8x) + i8y), saturating_add(i8x, i8y));
check(u8_sat(u16(u8x) + u8y), saturating_add(u8x, u8y));
check(u8(min(u16(u8x) + u16(u8y), 255)), saturating_add(u8x, u8y));
check(u8(min(i16(u8x) + i16(u8y), 255)), saturating_add(u8x, u8y));
check(i8_sat(i16(i8x) - i8y), saturating_sub(i8x, i8y));
check(u8(max(i16(u8x) - i16(u8y), 0)), saturating_sub(u8x, u8y));
// Check halving arithmetic
check(i8((i16(i8x) + i8y) / 2), halving_add(i8x, i8y));
check(u8((u16(u8x) + u8y) / 2), halving_add(u8x, u8y));
check(i8(widening_add(i8x, i8y) / 2), halving_add(i8x, i8y));
check(u8(widening_add(u8x, u8y) / 2), halving_add(u8x, u8y));
check((i32x + i32y) / 2, halving_add(i32x, i32y));
check((f32x + f32y) / 2, (f32x + f32y) * 0.5f);
check(i8((i16(i8x) - i8y) / 2), halving_sub(i8x, i8y));
check(u8((u16(u8x) - u8y) / 2), halving_sub(u8x, u8y));
check(i8(widening_sub(i8x, i8y) / 2), halving_sub(i8x, i8y));
check(u8(widening_sub(u8x, u8y) / 2), halving_sub(u8x, u8y));
check((i32x - i32y) / 2, halving_sub(i32x, i32y));
check((f32x - f32y) / 2, (f32x - f32y) * 0.5f);
check(i8((i16(i8x) + i8y + 1) / 2), rounding_halving_add(i8x, i8y));
check(u8((u16(u8x) + u8y + 1) / 2), rounding_halving_add(u8x, u8y));
check(i8((widening_add(i8x, i8y) + 1) / 2), rounding_halving_add(i8x, i8y));
check(u8((widening_add(u8x, u8y) + 1) / 2), rounding_halving_add(u8x, u8y));
check((i32x + i32y + 1) / 2, rounding_halving_add(i32x, i32y));
// Check absd
check(abs(i16(i8x) - i16(i8y)), u16(absd(i8x, i8y)));
check(abs(i16(u8x) - i16(u8y)), u16(absd(u8x, u8y)));
check(abs(f16x - f16y), absd(f16x, f16y));
check(abs(f32x - f32y), absd(f32x, f32y));
check(abs(widening_sub(i8x, i8y)), u16(absd(i8x, i8y)));
check(abs(widening_sub(u8x, u8y)), u16(absd(u8x, u8y)));
check(abs(widening_sub(f16x, f16y)), f32(abs(f16x - f16y)));
// Check rounding shifts
// With constants
check(narrow((i16(i8x) + 8) / 16), rounding_shift_right(i8x, 4));
check(narrow(widening_add(i8x, i8(4)) / 8), rounding_shift_right(i8x, 3));
check(i8(widening_add(i8x, i8(32)) / 64), rounding_shift_right(i8x, 6));
check((i8x + i8(32)) / 64, (i8x + i8(32)) >> 6); // Not a rounding_shift_right due to overflow.
check((i32x + 16) / 32, rounding_shift_right(i32x, 5));
// rounding_right_shift of a widening add can be strength-reduced
check(narrow((u16(u8x) + 15) >> 4), rounding_halving_add(u8x, u8(14)) >> u8(3));
check(narrow((u32(u16x) + 15) >> 4), rounding_halving_add(u16x, u16(14)) >> u16(3));
// But not if the constant can't fit in the narrower type
check(narrow((u16(u8x) + 500) >> 4), narrow((widen_right_add(cast<uint16_t>(500), u8x)) >> 4));
check((u64(u32x) + 8) / 16, u64(rounding_shift_right(u32x, 4)));
check(u16(min((u64(u32x) + 8) / 16, 65535)), u16_sat(rounding_shift_right(u32x, 4)));
// And with variable shifts. These won't match unless Halide can statically
// prove it's not an out-of-range shift.
Expr u8yc = Min::make(u8y, make_const(u8y.type(), 7));
Expr i8yc = Max::make(Min::make(i8y, make_const(i8y.type(), 7)), make_const(i8y.type(), -7));
check(i8(widening_add(i8x, (i8(1) << u8yc) / 2) >> u8yc), rounding_shift_right(i8x, u8yc));
check((i32x + (i32(1) << u32y) / 2) >> u32y, rounding_shift_right(i32x, u32y));
check(i8(widening_add(i8x, (i8(1) << max(i8yc, 0)) / 2) >> i8yc), rounding_shift_right(i8x, i8yc));
check((i32x + (i32(1) << max(i32y, 0)) / 2) >> i32y, rounding_shift_right(i32x, i32y));
check(i8(widening_add(i8x, (i8(1) >> min(i8yc, 0)) / 2) << i8yc), rounding_shift_left(i8x, i8yc));
check((i32x + (i32(1) >> min(i32y, 0)) / 2) << i32y, rounding_shift_left(i32x, i32y));
check(i8(widening_add(i8x, (i8(1) << -min(i8yc, 0)) / 2) << i8yc), rounding_shift_left(i8x, i8yc));
check((i32x + (i32(1) << -min(i32y, 0)) / 2) << i32y, rounding_shift_left(i32x, i32y));
check((i32x + (i32(1) << max(-i32y, 0)) / 2) << i32y, rounding_shift_left(i32x, i32y));
// Test combinations of multiplies and adds with widening
// Same sign:
check(i16(i8x) * i8y + i16(i8z) * i8w, widening_mul(i8x, i8y) + widening_mul(i8z, i8w));
check(u16(u8x) * u8y + u16(u8z) * u8w, widening_mul(u8x, u8y) + widening_mul(u8z, u8w));
check(i32(i8x) * i8y + i32(i8z) * i8w, widening_add(widening_mul(i8x, i8y), widening_mul(i8z, i8w)));
check(u32(u8x) * u8y + u32(u8z) * u8w, widening_add(widening_mul(u8x, u8y), widening_mul(u8z, u8w)), UInt(32, 4));
// Mixed signs:
check(i16(u8x) * i8y + i16(u8z) * i8w, widening_mul(u8x, i8y) + widening_mul(u8z, i8w), Int(16, 4));
// Widening multiply-adds involving constants should be rewritten to adds whenever possible:
check(i16(i8x) * 3 + i16(i8y) * 5, widening_mul(i8x, i8(3)) + widening_mul(i8y, i8(5)));
check(i16(i8x) * 5 - i16(i8y) * 127, widening_mul(i8x, i8(5)) + widening_mul(i8y, i8(-127)));
check(i16(u8x) * 3 - i16(u8y) * 7, widening_mul(u8x, i8(3)) + widening_mul(u8y, i8(-7)));
check(i32(i8x) * 3 + i32(i8y) * 5, widening_add(widening_mul(i8x, i8(3)), widening_mul(i8y, i8(5))));
check(i32(i8x) * 5 - i32(i8y) * 3, widening_add(widening_mul(i8x, i8(5)), widening_mul(i8y, i8(-3))));
check(i32(u8x) * 7 - i32(u8y) * 6, widening_add(widening_mul(u8x, i8(7)), widening_mul(u8y, i8(-6))));
check((i16(u8x) * 4 + i16(u8y)) * 3, widening_mul(u8x, i8(12)) + widening_mul(u8y, i8(3)));
check((i16(i8y) * 7 + i16(i8x)) * 5, widening_mul(i8y, i8(35)) + widening_mul(i8x, i8(5)));
check((i16(u8x) * 4 - i16(u8y)) * 3, widening_mul(u8x, i8(12)) + widening_mul(u8y, i8(-3)));
check((i16(i8x) - i16(i8y) * 7) * 5, widening_mul(i8x, i8(5)) + widening_mul(i8y, i8(-35)));
check((u16(u8x) + u16(u8y)) * 2, widening_shift_left(u8x, 1) + widening_shift_left(u8y, 1));
check((u16(u8x) - u16(u8y)) * 2, widening_shift_left(u8x, 1) - widening_shift_left(u8y, 1));
check((u16(u8x) * 4 + u16(u8y)) * 3, widening_mul(u8x, u8(12)) + widening_mul(u8y, u8(3)));
check((u16(u8y) * 7 + u16(u8x)) * 5, widening_mul(u8y, u8(35)) + widening_mul(u8x, u8(5)));
// TODO: Should these be rewritten to widening muls with mixed signs?
check((u16(u8x) * 4 - u16(u8y)) * 3, widening_mul(u8x, u8(12)) - widening_mul(u8y, u8(3)));
check((u16(u8x) - u16(u8y) * 7) * 5, widening_mul(u8x, u8(5)) - widening_mul(u8y, u8(35)));
// Quantized multiplication.
check(i8_sat(i16(i8x) * i16(i8y) >> 7), mul_shift_right(i8x, i8y, 7));
check(i8(min(i16(i8x) * i16(i8y) >> 7, 127)), mul_shift_right(i8x, i8y, 7));
check(i8_sat(i16(i8x) * i16(i8y) >> 8), mul_shift_right(i8x, i8y, 8));
check(u8_sat(u16(u8x) * u16(u8y) >> 8), mul_shift_right(u8x, u8y, 8));
check(i8(i16(i8x) * i16(i8y) >> 8), mul_shift_right(i8x, i8y, 8));
check(u8(u16(u8x) * u16(u8y) >> 8), mul_shift_right(u8x, u8y, 8));
// Multiplication of mixed-width integers
check(u16(u32(u16x) * u32(u8y) >> 8), mul_shift_right(u16x, u16(u8y), 8));
// Multiplication of mixed-sign integers shouldn't use mul_shift_right
check(i32(i64(u32x) * i64(i32y) >> 32), i32(widening_mul(u32x, i32y) >> 32));
check(i8_sat(rounding_shift_right(i16(i8x) * i16(i8y), 7)), rounding_mul_shift_right(i8x, i8y, 7));
check(i8(min(rounding_shift_right(i16(i8x) * i16(i8y), 7), 127)), rounding_mul_shift_right(i8x, i8y, 7));
check(i8_sat(rounding_shift_right(i16(i8x) * i16(i8y), 8)), rounding_mul_shift_right(i8x, i8y, 8));
check(u8_sat(rounding_shift_right(u16(u8x) * u16(u8y), 8)), rounding_mul_shift_right(u8x, u8y, 8));
check(i8(rounding_shift_right(i16(i8x) * i16(i8y), 8)), rounding_mul_shift_right(i8x, i8y, 8));
check(u8(rounding_shift_right(u16(u8x) * u16(u8y), 8)), rounding_mul_shift_right(u8x, u8y, 8));
check_intrinsics_over_range<int8_t>();
check_intrinsics_over_range<uint8_t>();
check_intrinsics_over_range<int16_t>();
check_intrinsics_over_range<uint16_t>();
check_intrinsics_over_range<int32_t>();
check_intrinsics_over_range<uint32_t>();
// The intrinsics-matching pass substitutes in widening lets. At
// one point this caused a missing symbol bug for the code below
// due to a subexpression not getting mutated.
{
Func f, g;
Var x;
Param<uint8_t> d;
f(x) = cast<uint8_t>(x);
f.compute_root();
// We want a widening let that uses a load that uses a widening let
// Widen it, but in a way that won't result in the cast being
// substituted in by the simplifier. We want it to only be
// substituted when we reach the intrinsics-matching pass.
Expr widened = absd(cast<uint16_t>(f(x)), cast<uint16_t>(d));
// Now use it in a load, twice, so that CSE pulls it out as a let.
Expr lut = f(cast<int32_t>(widened * widened));
// Now use that in another widening op...
Expr widened2 = absd(cast<uint16_t>(lut), cast<uint16_t>(d));
// ...which we will use twice so that CSE makes it another let.
g(x) = widened2 * widened2;
g.vectorize(x, 8);
// This used to crash with a missing symbol error
g.compile_jit();
}
// Rounding shifts by extreme values, when lowered, used to have the
// potential to overflow and turn into out-of-range shifts. The simplifier
// detected this and injected a signed_integer_overflow intrinsic, which
// then threw an error in codegen, even though the rounding shift calls are
// well-defined.
{
Func f, g;
f(x) = cast<uint8_t>(x);
f.compute_root();
g(x) = rounding_shift_right(f(x), 0) + u8(rounding_shift_left(u16(f(x)), 11));
g.compile_jit();
}
printf("Success!\n");
return 0;
}
|