1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
#include "Halide.h"
#include <stdio.h>
namespace {
using namespace Halide;
using namespace Halide::Internal;
using std::string;
// Count the number of stores to a given func, and the number of calls to sin
class Counter : public IRVisitor {
string func;
using IRVisitor::visit;
void visit(const Store *op) override {
IRVisitor::visit(op);
if (op->name == func) {
store_count++;
}
}
void visit(const Call *op) override {
IRVisitor::visit(op);
if (op->name == "sin_f32") {
sin_count++;
}
}
public:
int store_count, sin_count;
Counter(string f)
: func(f), store_count(0), sin_count(0) {
}
};
// Check that the number of calls to sin is correct.
class CheckSinCount : public IRMutator {
int correct;
public:
using IRMutator::mutate;
Stmt mutate(const Stmt &s) override {
Counter c("");
s.accept(&c);
if (c.sin_count != correct) {
printf("There were %d sin calls instead of %d\n", c.sin_count, correct);
exit(1);
}
return s;
}
CheckSinCount(int c)
: correct(c) {
}
};
// Check that the number of stores to a given func is correct
class CheckStoreCount : public IRMutator {
string func;
int correct;
public:
using IRMutator::mutate;
Stmt mutate(const Stmt &s) override {
Counter c(func);
s.accept(&c);
if (c.store_count != correct) {
printf("There were %d stores to %s instead of %d\n", c.store_count, func.c_str(), correct);
debug(1) << s << "\n";
exit(1);
}
return s;
}
CheckStoreCount(string f, int c)
: func(f), correct(c) {
}
};
void count_partitions(Func g, int correct) {
g.add_custom_lowering_pass(new CheckStoreCount(g.name(), correct));
g.compile_to_module(g.infer_arguments());
}
void count_sin_calls(Func g, int correct) {
g.add_custom_lowering_pass(new CheckSinCount(correct));
g.compile_to_module(g.infer_arguments());
}
} // namespace
int main(int argc, char **argv) {
Func f;
Var x;
f(x) = x;
f.compute_root();
// Halide will partition a loop into three pieces in a few
// situations. The pieces are 1) a messy prologue, 2) a clean
// steady state, and 3) a messy epilogue. One way to trigger this
// is if you use a boundary condition helper:
{
Func g = BoundaryConditions::repeat_edge(f, {{0, 100}});
count_partitions(g, 3);
// check that disabling works.
g.partition(x, Partition::Never);
count_partitions(g, 1);
}
// If you vectorize or otherwise split, then the last vector
// (which gets shifted leftwards) is its own partition. This
// removes some clamping logic from the inner loop.
{
Func g;
g(x) = f(x);
g.vectorize(x, 8);
count_partitions(g, 2);
// check that disabling works.
g.partition(x, Partition::Never);
count_partitions(g, 1);
}
// The slicing applies to every loop level starting from the outermost one,
// but only recursively simplifies the clean steady state. It either splits
// things three (start, middle, end). So adding a boundary condition to a 2D
// computation will produce 5 code paths for the top, bottom, left, right,
// and center of the image. With explicit control over loop partitioning, we
// might produce more or fewer.
{
Var y;
Func g;
g(x, y) = x + y;
g.compute_root();
Func h = BoundaryConditions::mirror_image(g, {{0, 10}, {0, 10}});
count_partitions(h, 5);
{
debug(1) << "Never partition y, always partition x:\n";
Func h2 = h;
h2.partition(x, Partition::Always);
h2.partition(y, Partition::Never);
count_partitions(h2, 3); // We expect left-center-right
}
{
debug(1) << "Never partition x, always partition y:\n";
Func h2 = h;
h2.partition(x, Partition::Never);
h2.partition(y, Partition::Always);
count_partitions(h2, 3); // We expect top-middle-bottom
}
{
debug(1) << "Never partition x and y.\n";
Func h2 = h;
h2.partition(x, Partition::Never);
h2.partition(y, Partition::Never);
count_partitions(h2, 1);
}
{
debug(1) << "Always partition x and y.\n";
Func h2 = h;
h2.partition(x, Partition::Always);
h2.partition(y, Partition::Always);
// All loops get partitioned, including the tails of outer loops, so we expect 9 zones:
/*
----------------------------------------------
| top left | top middle | top right |
| ------------------------------------------ |
| left | middle | right |
| ------------------------------------------ |
| bottom left | bottom middle | bottom right |
----------------------------------------------
*/
count_partitions(h2, 9);
}
}
// If you split and also have a boundary condition, or have
// multiple boundary conditions at play (e.g. because you're
// blurring an inlined Func that uses a boundary condition), then
// there are still only three partitions. The steady state is the
// slice of the loop where *all* of the boundary conditions and
// splitting logic simplify away.
{
Func g = BoundaryConditions::mirror_interior(f, {{0, 10}});
Func h;
Param<int> t1, t2;
h(x) = g(x - 1) + g(x + 1);
h.vectorize(x, 8);
count_partitions(h, 3);
}
// You can manually control the splitting behavior using the
// 'likely' intrinsic. When used on one side of a select, min,
// max, or clamp, it tags the select, min, max, or clamp as likely
// to simplify to that expression in the steady state case, and
// tries to solve for loop variable values for which this is true.
{
// So this code should produce a prologue that evaluates to sin(x), and
// a steady state that evaluates to 1:
Func g;
g(x) = select(x < 10, sin(x), likely(1.0f));
// There should be two partitions
count_partitions(g, 2);
// But only one should call sin
count_sin_calls(g, 1);
}
{
// This code should produce a prologue and epilogue that
// evaluate sin(x), and a steady state that evaluates to 1:
Func g;
g(x) = select(x < 10 || x > 100, sin(x), likely(1.0f));
// There should be three partitions
count_partitions(g, 3);
// With calls to sin in the prologue and epilogue.
count_sin_calls(g, 2);
}
// As a specialize case, we treat clamped ramps as likely to
// simplify to the clamped expression. This handles the many
// existing cases where people have written their boundary
// condition manually using clamp.
{
Func g;
g(x) = f(clamp(x, 0, 10)); // treated as clamp(likely(x), 0, 10)
g.vectorize(x, 8);
count_partitions(g, 3);
// check that disabling works.
g.partition(x, Partition::Never);
count_partitions(g, 1);
}
// Using the likely intrinsic pulls some IR relating to the
// condition outside of the loop. We'd better check that this
// respects lets and doesn't do any combinatorial expansion. We'll
// do this with a nasty comparison:
{
Func g;
Var y;
// Have an inner reduction loop that the comparisons depend on
// to make things harder.
RDom r(0, 5);
const int N = 25;
// Make some nasty expressions to compare to.
Expr e[N];
e[0] = y;
for (int i = 1; i < N; i++) {
e[i] = e[i - 1] * e[i - 1] + y + r;
}
// Make a nasty condition that uses all of these.
Expr nasty = cast<bool>(1);
for (int i = 0; i < N; i++) {
nasty = nasty && (x * (i + 1) < e[i]);
}
// Have an innermost loop over c to complicate things further.
Var c;
g(c, x, y) = sum(select(nasty, likely(10), c + r));
// Check that it doesn't take the age of the world to compile,
// and that it produces the right number of partitions.
count_partitions(g, 3);
}
// Make sure partitions that occur outside of the actual bounds
// don't mess things up.
{
Func g;
Var x;
Param<int> limit;
g(x) = select(x > limit, likely(3), 2);
// If either of these realize calls iterates from 0 to limit,
// and then from limit to 10, we'll have a nice segfault.
limit.set(10000000);
Buffer<int> result = g.realize({10});
limit.set(-10000000);
result = g.realize({10});
}
// Test for the bug described in https://github.com/halide/Halide/issues/7929
{
Func f, g, h;
Var x, y;
f(x, y) = x;
f.compute_root();
Param<int> p;
g = BoundaryConditions::repeat_edge(f, {{0, p}, {Expr(), Expr()}});
h(x, y) = g(x, y) + g(x, y + 1) + g(x, y + 2);
count_partitions(h, 3);
// Same thing with vectorization too.
h.vectorize(x, 8);
count_partitions(h, 3);
}
// The performance of this behavior is tested in
// test/performance/boundary_conditions.cpp
printf("Success!\n");
return 0;
}
|