File: logical.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (214 lines) | stat: -rw-r--r-- 7,230 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include "Halide.h"
#include <stdio.h>

using namespace Halide;

Expr u8(Expr a) {
    return cast<uint8_t>(a);
}

Expr u16(Expr a) {
    return cast<uint16_t>(a);
}

int main(int argc, char **argv) {

    Buffer<uint8_t> input(128, 64);

    for (int y = 0; y < input.height(); y++) {
        for (int x = 0; x < input.width(); x++) {
            input(x, y) = y * input.width() + x;
        }
    }

    Var x, y, xi, yi;
    {
        Func f;
        f(x, y) = select(((input(x, y) > 10) && (input(x, y) < 20)) ||
                             ((input(x, y) > 40) && (!(input(x, y) > 50))),
                         u8(255), u8(0));

        Target target = get_jit_target_from_environment();
        if (target.has_gpu_feature()) {
            f.gpu_tile(x, y, xi, yi, 16, 16);
            f.vectorize(xi, 4);
        } else if (target.has_feature(Target::HVX)) {
            f.hexagon().vectorize(x, 128);
        } else {
            f.vectorize(x, 8);
        }

        Buffer<uint8_t> output = f.realize({input.width(), input.height()}, target);

        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                bool cond = ((input(x, y) > 10) && (input(x, y) < 20)) ||
                            ((input(x, y) > 40) && (!(input(x, y) > 50)));
                uint8_t correct = cond ? 255 : 0;
                if (correct != output(x, y)) {
                    fprintf(stderr, "output(%d, %d) = %d instead of %d\n", x, y, output(x, y), correct);
                    return 1;
                }
            }
        }
    }

    // Test a condition that uses a let resulting from common
    // subexpression elimination.
    {
        Func f;
        Expr common_cond = input(x, y) > 10;
        f(x, y) = select((common_cond && (input(x, y) < 20)) ||
                             ((input(x, y) > 40) && (!common_cond)),
                         u8(255), u8(0));

        Target target = get_jit_target_from_environment();
        if (target.has_gpu_feature()) {
            f.gpu_tile(x, y, xi, yi, 16, 16);
            f.vectorize(xi, 4);
        } else if (target.has_feature(Target::HVX)) {
            f.hexagon().vectorize(x, 128);
        } else {
            f.vectorize(x, 8);
        }

        Buffer<uint8_t> output = f.realize({input.width(), input.height()}, target);

        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                bool common_cond = input(x, y) > 10;
                bool cond = (common_cond && (input(x, y) < 20)) ||
                            ((input(x, y) > 40) && (!common_cond));
                uint8_t correct = cond ? 255 : 0;
                if (correct != output(x, y)) {
                    fprintf(stderr, "output(%d, %d) = %d instead of %d\n", x, y, output(x, y), correct);
                    return 1;
                }
            }
        }
    }

    // Test a condition which has vector and scalar inputs.
    {
        Func f("f");
        f(x, y) = select(x < 10 || x > 20 || y < 10 || y > 20, 0, input(x, y));

        Target target = get_jit_target_from_environment();

        if (target.has_gpu_feature()) {
            f.gpu_tile(x, y, xi, yi, 16, 16);
            f.vectorize(xi, 4);
        } else if (target.has_feature(Target::HVX)) {
            f.hexagon().vectorize(x, 128);
        } else {
            f.vectorize(x, 128);
        }

        Buffer<uint8_t> output = f.realize({input.width(), input.height()}, target);

        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                bool cond = x < 10 || x > 20 || y < 10 || y > 20;
                uint8_t correct = cond ? 0 : input(x, y);
                if (correct != output(x, y)) {
                    fprintf(stderr, "output(%d, %d) = %d instead of %d\n", x, y, output(x, y), correct);
                    return 1;
                }
            }
        }
    }

    // Test a condition that uses differently sized types.
    {
        Func f;
        Expr ten = 10;
        f(x, y) = select(input(x, y) > ten, u8(255), u8(0));

        Target target = get_jit_target_from_environment();
        if (target.has_gpu_feature()) {
            f.gpu_tile(x, y, xi, yi, 16, 16);
            f.vectorize(xi, 4);
        } else if (target.has_feature(Target::HVX)) {
            f.hexagon().vectorize(x, 128);
        } else {
            f.vectorize(x, 8);
        }

        Buffer<uint8_t> output = f.realize({input.width(), input.height()}, target);

        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                bool cond = input(x, y) > 10;
                uint8_t correct = cond ? 255 : 0;
                if (correct != output(x, y)) {
                    fprintf(stderr, "output(%d, %d) = %d instead of %d\n", x, y, output(x, y), correct);
                    return 1;
                }
            }
        }
    }

    // Test a select where the condition has a different width than
    // the true/false values.
    for (int w = 8; w <= 32; w *= 2) {
        for (int n = 8; n < w; n *= 2) {
            Type narrow = UInt(n), wide = UInt(w);

            Func in_wide;
            in_wide(x, y) = cast(wide, y + x * 3);
            in_wide.compute_root();

            Func in_narrow;
            in_narrow(x, y) = cast(narrow, x * y + x - 17);
            in_narrow.compute_root();

            Func f;
            f(x, y) = select(in_narrow(x, y) > 10, in_wide(x, y * 2), in_wide(x, y * 2 + 1));

            Func cpu;
            cpu(x, y) = f(x, y);

            Func gpu;
            gpu(x, y) = f(x, y);

            Func out;
            out(x, y) = {cast<uint32_t>(cpu(x, y)), cast<uint32_t>(gpu(x, y))};

            cpu.compute_root();
            gpu.compute_root();

            Target target = get_jit_target_from_environment();
            if (target.has_feature(Target::OpenCL) && n == 16 && w == 32) {
                // Workaround for https://github.com/halide/Halide/issues/2477
                printf("Skipping uint%d -> uint%d for OpenCL\n", n, w);
                continue;
            }
            if (target.has_gpu_feature()) {
                gpu.gpu_tile(x, y, xi, yi, 16, 16);
                gpu.vectorize(xi, 4);
            } else if (target.has_feature(Target::HVX)) {
                gpu.hexagon().vectorize(x, 128);
            } else {
                // Just test vectorization
                gpu.vectorize(x, 8);
            }

            Realization r = out.realize({input.width(), input.height()}, target);
            Buffer<uint32_t> cpu_output = r[0];
            Buffer<uint32_t> gpu_output = r[1];

            for (int y = 0; y < input.height(); y++) {
                for (int x = 0; x < input.width(); x++) {
                    if (cpu_output(x, y) != gpu_output(x, y)) {
                        fprintf(stderr, "gpu_output(%d, %d) = %d instead of %d for uint%d -> uint%d\n",
                                x, y, gpu_output(x, y), cpu_output(x, y), n, w);
                        return 1;
                    }
                }
            }
        }
    }

    printf("Success!\n");
    return 0;
}