1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
#include "Halide.h"
using namespace Halide;
using namespace Halide::Internal;
int check_lossless_cast(const Type &t, const Expr &in, const Expr &correct) {
Expr result = lossless_cast(t, in);
if (!equal(result, correct)) {
std::cout << "Incorrect lossless_cast result:\n"
<< "lossless_cast(" << t << ", " << in << ") gave:\n"
<< " " << result
<< " but expected was:\n"
<< " " << correct << "\n";
return 1;
}
return 0;
}
int lossless_cast_test() {
Expr x = Variable::make(Int(32), "x");
Type u8 = UInt(8);
Type u16 = UInt(16);
Type u32 = UInt(32);
// Type u64 = UInt(64);
Type i8 = Int(8);
Type i16 = Int(16);
Type i32 = Int(32);
Type i64 = Int(64);
Type u8x = UInt(8, 4);
Type u16x = UInt(16, 4);
Type u32x = UInt(32, 4);
Expr var_u8 = Variable::make(u8, "x");
Expr var_u16 = Variable::make(u16, "x");
Expr var_u8x = Variable::make(u8x, "x");
int res = 0;
Expr e = cast(u8, x);
res |= check_lossless_cast(i32, e, cast(i32, e));
e = cast(u8, x);
res |= check_lossless_cast(i32, e, cast(i32, e));
e = cast(i8, var_u16);
res |= check_lossless_cast(u16, e, Expr());
e = cast(i16, var_u16);
res |= check_lossless_cast(u16, e, Expr());
e = cast(u32, var_u8);
res |= check_lossless_cast(u16, e, cast(u16, var_u8));
e = VectorReduce::make(VectorReduce::Add, cast(u16x, var_u8x), 1);
res |= check_lossless_cast(u16, e, cast(u16, e));
e = VectorReduce::make(VectorReduce::Add, cast(u32x, var_u8x), 1);
res |= check_lossless_cast(u16, e, VectorReduce::make(VectorReduce::Add, cast(u16x, var_u8x), 1));
e = cast(u32, var_u8) - 16;
res |= check_lossless_cast(u16, e, Expr());
e = cast(u32, var_u8) + 16;
res |= check_lossless_cast(u16, e, cast(u16, var_u8) + 16);
e = 16 - cast(u32, var_u8);
res |= check_lossless_cast(u16, e, Expr());
e = 16 + cast(u32, var_u8);
res |= check_lossless_cast(u16, e, 16 + cast(u16, var_u8));
// Check one where the target type is unsigned but there's a signed addition
// (that can't overflow)
e = cast(i64, cast(u16, var_u8) + cast(i32, 17));
res |= check_lossless_cast(u32, e, cast(u32, cast(u16, var_u8)) + cast(u32, 17));
// Check one where the target type is unsigned but there's a signed subtract
// (that can overflow). It's not safe to enter the i16 sub
e = cast(i64, cast(i16, 10) - cast(i16, 17));
res |= check_lossless_cast(u32, e, Expr());
e = cast(i64, 1024) * cast(i64, 1024) * cast(i64, 1024);
res |= check_lossless_cast(i32, e, (cast(i32, 1024) * 1024) * 1024);
return res;
}
constexpr int size = 1024;
Buffer<uint8_t> buf_u8(size, "buf_u8");
Buffer<int8_t> buf_i8(size, "buf_i8");
Var x{"x"};
Expr random_expr(std::mt19937 &rng) {
std::vector<Expr> exprs;
// Add some atoms
exprs.push_back(cast<uint8_t>((uint8_t)rng()));
exprs.push_back(cast<int8_t>((int8_t)rng()));
exprs.push_back(cast<uint8_t>((uint8_t)rng()));
exprs.push_back(cast<int8_t>((int8_t)rng()));
exprs.push_back(buf_u8(x));
exprs.push_back(buf_i8(x));
// Make random combinations of them
while (true) {
Expr e;
int i1 = rng() % exprs.size();
int i2 = rng() % exprs.size();
int i3 = rng() % exprs.size();
int op = rng() % 8;
Expr e1 = exprs[i1];
Expr e2 = cast(e1.type(), exprs[i2]);
Expr e3 = cast(e1.type().with_code(halide_type_uint), exprs[i3]);
bool may_widen = e1.type().bits() < 64;
Expr e2_narrow = exprs[i2];
bool may_widen_right = e2_narrow.type() == e1.type().narrow();
switch (op) {
case 0:
if (may_widen) {
e = cast(e1.type().widen(), e1);
}
break;
case 1:
if (may_widen) {
e = cast(Int(e1.type().bits() * 2), e1);
}
break;
case 2:
e = e1 + e2;
break;
case 3:
e = e1 - e2;
break;
case 4:
e = e1 * e2;
break;
case 5:
e = e1 / e2;
break;
case 6:
// Introduce some lets
e = common_subexpression_elimination(e1);
break;
case 7:
switch (rng() % 20) {
case 0:
if (may_widen) {
e = widening_add(e1, e2);
}
break;
case 1:
if (may_widen) {
e = widening_sub(e1, e2);
}
break;
case 2:
if (may_widen) {
e = widening_mul(e1, e2);
}
break;
case 3:
e = halving_add(e1, e2);
break;
case 4:
e = rounding_halving_add(e1, e2);
break;
case 5:
e = halving_sub(e1, e2);
break;
case 6:
e = saturating_add(e1, e2);
break;
case 7:
e = saturating_sub(e1, e2);
break;
case 8:
e = count_leading_zeros(e1);
break;
case 9:
e = count_trailing_zeros(e1);
break;
case 10:
if (may_widen) {
e = rounding_mul_shift_right(e1, e2, e3);
}
break;
case 11:
if (may_widen) {
e = mul_shift_right(e1, e2, e3);
}
break;
case 12:
if (may_widen_right) {
e = widen_right_add(e1, e2_narrow);
}
break;
case 13:
if (may_widen_right) {
e = widen_right_sub(e1, e2_narrow);
}
break;
case 14:
if (may_widen_right) {
e = widen_right_mul(e1, e2_narrow);
}
break;
case 15:
e = e1 << e2;
break;
case 16:
e = e1 >> e2;
break;
case 17:
e = rounding_shift_right(e1, e2);
break;
case 18:
e = rounding_shift_left(e1, e2);
break;
case 19:
e = ~e1;
break;
}
}
if (!e.defined()) {
continue;
}
// Stop when we get to 64 bits, but probably don't stop on a cast,
// because that'll just get trivially stripped.
if (e.type().bits() == 64 && (e.as<Cast>() == nullptr || ((rng() & 7) == 0))) {
return e;
}
exprs.push_back(e);
}
}
bool definitely_has_ub(Expr e) {
e = simplify(e);
class HasOverflow : public IRVisitor {
void visit(const Call *op) override {
if (op->is_intrinsic({Call::signed_integer_overflow})) {
found = true;
}
IRVisitor::visit(op);
}
public:
bool found = false;
} has_overflow;
e.accept(&has_overflow);
return has_overflow.found;
}
bool might_have_ub(Expr e) {
class MightOverflow : public IRVisitor {
std::map<Expr, ConstantInterval, ExprCompare> cache;
using IRVisitor::visit;
bool no_overflow_int(const Type &t) {
return t.is_int() && t.bits() >= 32;
}
ConstantInterval bounds(const Expr &e) {
return constant_integer_bounds(e, Scope<ConstantInterval>::empty_scope(), &cache);
}
void visit(const Add *op) override {
if (no_overflow_int(op->type) &&
!op->type.can_represent(bounds(op->a) + bounds(op->b))) {
found = true;
} else {
IRVisitor::visit(op);
}
}
void visit(const Sub *op) override {
if (no_overflow_int(op->type) &&
!op->type.can_represent(bounds(op->a) - bounds(op->b))) {
found = true;
} else {
IRVisitor::visit(op);
}
}
void visit(const Mul *op) override {
if (no_overflow_int(op->type) &&
!op->type.can_represent(bounds(op->a) * bounds(op->b))) {
found = true;
} else {
IRVisitor::visit(op);
}
}
void visit(const Div *op) override {
if (no_overflow_int(op->type) &&
(bounds(op->a) / bounds(op->b)).contains(-1)) {
found = true;
} else {
IRVisitor::visit(op);
}
}
void visit(const Cast *op) override {
if (no_overflow_int(op->type) &&
!op->type.can_represent(bounds(op->value))) {
found = true;
} else {
IRVisitor::visit(op);
}
}
void visit(const Call *op) override {
if (op->is_intrinsic({Call::shift_left,
Call::shift_right,
Call::rounding_shift_left,
Call::rounding_shift_right,
Call::widening_shift_left,
Call::widening_shift_right,
Call::mul_shift_right,
Call::rounding_mul_shift_right})) {
auto shift_bounds = bounds(op->args.back());
if (!(shift_bounds > -op->type.bits() && shift_bounds < op->type.bits())) {
found = true;
}
} else if (op->is_intrinsic({Call::signed_integer_overflow})) {
found = true;
}
IRVisitor::visit(op);
}
public:
bool found = false;
} checker;
e.accept(&checker);
return checker.found;
}
bool found_error = false;
int test_one(uint32_t seed) {
std::mt19937 rng{seed};
buf_u8.fill(rng);
buf_i8.fill(rng);
Expr e1 = random_expr(rng);
Expr simplified = simplify(e1);
if (might_have_ub(e1) ||
might_have_ub(simplified) ||
might_have_ub(lower_intrinsics(simplified))) {
return 0;
}
// We're also going to test constant_integer_bounds here.
ConstantInterval bounds = constant_integer_bounds(e1);
Type target;
std::vector<Type> target_types = {UInt(32), Int(32), UInt(16), Int(16)};
target = target_types[rng() % target_types.size()];
Expr e2 = lossless_cast(target, e1);
if (!e2.defined()) {
return 0;
}
if (definitely_has_ub(e2)) {
std::cout << "lossless_cast introduced ub:\n"
<< "seed = " << seed << "\n"
<< "e1 = " << e1 << "\n"
<< "e2 = " << e2 << "\n"
<< "simplify(e1) = " << simplify(e1) << "\n"
<< "simplify(e2) = " << simplify(e2) << "\n";
return 1;
}
Func f;
f(x) = {cast<int64_t>(e1), cast<int64_t>(e2)};
f.vectorize(x, 4, TailStrategy::RoundUp);
Buffer<int64_t> out1(size), out2(size);
Pipeline p(f);
// Check for signed integer overflow
// Module m = p.compile_to_module({}, "test");
p.realize({out1, out2});
for (int x = 0; x < size; x++) {
if (out1(x) != out2(x)) {
std::cout
<< "lossless_cast failure\n"
<< "seed = " << seed << "\n"
<< "x = " << x << "\n"
<< "buf_u8 = " << (int)buf_u8(x) << "\n"
<< "buf_i8 = " << (int)buf_i8(x) << "\n"
<< "out1 = " << out1(x) << "\n"
<< "out2 = " << out2(x) << "\n"
<< "Original: " << e1 << "\n"
<< "Lossless cast: " << e2 << "\n";
return 1;
}
}
for (int x = 0; x < size; x++) {
if ((e1.type().is_int() && !bounds.contains(out1(x))) ||
(e1.type().is_uint() && !bounds.contains((uint64_t)out1(x)))) {
Expr simplified = simplify(e1);
std::cout
<< "constant_integer_bounds failure\n"
<< "seed = " << seed << "\n"
<< "x = " << x << "\n"
<< "buf_u8 = " << (int)buf_u8(x) << "\n"
<< "buf_i8 = " << (int)buf_i8(x) << "\n"
<< "out1 = " << out1(x) << "\n"
<< "Expression: " << e1 << "\n"
<< "Bounds: " << bounds << "\n"
<< "Simplified: " << simplified << "\n"
// If it's still out-of-bounds when the expression is
// simplified, that'll be easier to debug.
<< "Bounds: " << constant_integer_bounds(simplified) << "\n";
return 1;
}
}
return 0;
}
int fuzz_test(uint32_t root_seed) {
std::mt19937 seed_generator(root_seed);
std::cout << "Fuzz testing with root seed " << root_seed << "\n";
for (int i = 0; i < 1000; i++) {
auto s = seed_generator();
std::cout << s << "\n";
if (test_one(s)) {
return 1;
}
}
return 0;
}
int main(int argc, char **argv) {
if (argc == 2) {
return test_one(atoi(argv[1]));
}
if (lossless_cast_test()) {
std::cout << "lossless_cast test failed!\n";
return 1;
}
if (fuzz_test(time(NULL))) {
std::cout << "lossless_cast fuzz test failed!\n";
return 1;
}
std::cout << "Success!\n";
return 0;
}
|