File: mul_div_mod.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (596 lines) | stat: -rw-r--r-- 20,846 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
#include "Halide.h"
#include "halide_thread_pool.h"
#include "test_sharding.h"

#include <algorithm>
#include <math.h>
#include <stdio.h>

#ifdef _MSC_VER
// Silence a warning that is obscure, harmless, and painful to work around
#pragma warning(disable : 4146)  // unary minus operator applied to unsigned type, result still unsigned
#endif

using namespace Halide;
using Halide::Internal::Call;

// Test program to check basic arithmetic.
// Pseudo-random numbers are generated and arithmetic operations performed on them.
// To ensure that the extremes of the data values are included in testing, the upper
// left corner of each matrix contains the extremes.

// The code uses 64 bit arithmetic to ensure that results are correct in 32 bits and fewer,
// even if overflow occurs.

// Dimensions of the test data, and rate of salting with extreme values (1 in SALTRATE)
#define WIDTH 1024
#define HEIGHT 1024
#define SALTRATE 50
// Portion of the test data to use for testing the simplifier
#define SWIDTH 32
#define SHEIGHT HEIGHT

// Generate poor quality pseudo random numbers.
// For reproducibility, the array indices are used as the seed for each
// number generated.  The algorithm simply multiplies the seeds by large
// primes and combines them together, then multiplies by additional large primes.
// We don't want to use primes that are close to powers of 2 because they dont
// randomise the bits.
//
// unique: Use different values to get unique data in each array.
// i, j: Coordinates for which the value is being generated.
uint64_t ubits(int unique, int i, int j) {
    uint64_t bits, mi, mj, mk, ml, mu;
    mi = 982451653;  // 50 M'th prime
    mj = 776531491;  // 40 M'th prime
    mk = 573259391;  // 30 M'th prime
    ml = 373587883;  // 20 M'th prime
    mu = 275604541;  // 15 M'th prime
    // Each of the above primes is at least 10^8 i.e. at least 24 bits
    // so we are assured that the initial value computed below occupies 64 bits
    // and then the subsequent operations help ensure that every bit is affected by
    // all three inputs.

    bits = ((unique * mu + i) * mi + j) * mj;  // All multipliers are prime
    bits = (bits ^ (bits >> 32)) * mk;
    bits = (bits ^ (bits >> 32)) * ml;
    bits = (bits ^ (bits >> 32)) * mi;
    bits = (bits ^ (bits >> 32)) * mu;
    return bits;
}

// Template to avoid autological comparison errors when comparing unsigned values for < 0
template<typename T>
bool less_than_zero(T val) {
    return (val < 0);
}

template<>
bool less_than_zero<unsigned long long>(unsigned long long val) {
    return false;
}

template<>
bool less_than_zero<unsigned long>(unsigned long val) {
    return false;
}

template<>
bool less_than_zero<unsigned int>(unsigned int val) {
    return false;
}

template<>
bool less_than_zero<unsigned short>(unsigned short val) {
    return false;
}

template<>
bool less_than_zero<unsigned char>(unsigned char val) {
    return false;
}

template<typename T>
bool is_negative_one(T val) {
    return (val == -1);
}

template<>
bool is_negative_one(unsigned long long val) {
    return false;
}

template<>
bool is_negative_one(unsigned long val) {
    return false;
}

template<>
bool is_negative_one(unsigned int val) {
    return false;
}

template<>
bool is_negative_one(unsigned short val) {
    return false;
}

template<>
bool is_negative_one(unsigned char val) {
    return false;
}

template<typename T, typename BIG>
BIG maximum() {
    Type t = type_of<T>();

    if (t.is_float()) {
        return (BIG)1.0;
    }
    if (t.is_uint()) {
        uint64_t max;
        max = 0;
        max = ~max;
        if (t.bits() < 64)
            max = (((uint64_t)1) << t.bits()) - 1;
        return (BIG)max;
    }
    if (t.is_int()) {
        uint64_t umax;
        umax = (((uint64_t)1) << (t.bits() - 1)) - 1;
        return (BIG)umax;
    }
    assert(0);
    return (BIG)1;
}

template<typename T, typename BIG>
BIG minimum() {
    Type t = type_of<T>();

    if (t.is_float()) {
        return (BIG)0.0;
    }
    if (t.is_uint()) {
        return (BIG)0;
    }
    if (t.is_int()) {
        uint64_t umax;
        BIG min;
        umax = (((uint64_t)1) << (t.bits() - 1)) - 1;
        min = umax;
        min = -min - 1;
        return min;
    }
    assert(0);
    return (BIG)0;
}

// Construct an image for testing.
// Contents are poor quality pseudo-random numbers in the natural range for the specified type.
// The top left corner contains one of two patterns.  (Remember that first coordinate is column in Halide)
//  min  max      OR      min  max
//  min  max              max  min
// The left pattern occurs when unique is odd; the right pattern when unique is even.

template<typename T, typename BIG>
Buffer<T> init(Type t, int unique, int width, int height) {
    if (width < 2) width = 2;
    if (height < 2) height = 2;

    Buffer<T> result(width, height);

    if (t.is_int()) {
        // Signed integer type with specified number of bits.
        int64_t max, min, neg, v, vsalt;
        max = maximum<T, int64_t>();
        min = minimum<T, int64_t>();
        neg = (~((int64_t)0)) ^ max;  // The bits that should all be 1 for negative numbers.
        for (int i = 0; i < width; i++) {
            for (int j = 0; j < height; j++) {
                v = (int64_t)(ubits(unique, i, j));
                if (v < 0)
                    v |= neg;  // Make all the high bits one
                else
                    v &= max;
                // Salting with extreme values
                vsalt = (int64_t)(ubits(unique | 0x100, i, j));
                if (vsalt % SALTRATE == 0) {
                    if (vsalt & 0x1000000) {
                        v = max;
                    } else {
                        v = min;
                    }
                }
                result(i, j) = (T)v;
            }
        }
        result(0, 0) = (T)min;
        result(1, 0) = (T)max;
        result(0, 1) = (T)((unique & 1) ? min : max);
        result(1, 1) = (T)((unique & 1) ? max : min);
    } else if (t.is_uint()) {
        uint64_t max, v, vsalt;
        max = maximum<T, BIG>();
        for (int i = 0; i < width; i++) {
            for (int j = 0; j < height; j++) {
                v = ubits(unique, i, j) & max;
                // Salting with extreme values
                vsalt = (int64_t)(ubits(unique | 0x100, i, j));
                if (vsalt % SALTRATE == 0) {
                    if (vsalt & 0x1000000) {
                        v = max;
                    } else {
                        v = 0;
                    }
                }
                result(i, j) = (T)v;
            }
        }
        result(0, 0) = (T)0;
        result(1, 0) = (T)max;
        result(0, 1) = (T)((unique & 1) ? 0 : max);
        result(1, 1) = (T)((unique & 1) ? max : 0);
    } else if (t.is_float()) {
        uint64_t uv, vsalt;
        uint64_t max = (uint64_t)(-1);
        double v;
        for (int i = 0; i < width; i++) {
            for (int j = 0; j < height; j++) {
                uv = ubits(unique, i, j);
                v = (((double)uv) / ((double)(max))) * 2.0 - 1.0;
                // Salting with extreme values
                vsalt = (int64_t)(ubits(unique | 0x100, i, j));
                if (vsalt % SALTRATE == 0) {
                    if (vsalt & 0x1000000) {
                        v = 1.0;
                    } else {
                        v = 0.0;
                    }
                }
                result(i, j) = (T)v;
            }
        }
        result(0, 0) = (T)(0.0);
        result(1, 0) = (T)(1.0);
        result(0, 1) = (T)((unique & 1) ? 0.0 : 1.0);
        result(1, 1) = (T)((unique & 1) ? 1.0 : 0.0);
    } else {
        printf("Unknown data type in init.\n");
    }

    return result;
}

enum ScheduleVariant {
    CPU,
    TiledGPU,
    Hexagon
};

// Test multiplication of T1 x T2 -> RT
template<typename T1, typename T2, typename RT, typename BIG>
bool mul(int vector_width, ScheduleVariant scheduling, const Target &target) {
    // std::cout << "Test multiplication of "
    //           << type_of<T1>() << "x" << vector_width << "*"
    //           << type_of<T2>() << "x" << vector_width << "->"
    //           << type_of<RT>() << "x" << vector_width << "\n";

    int i, j;
    Type t1 = type_of<T1>();
    Type t2 = type_of<T2>();
    Type rt = type_of<RT>();
    bool success = true;

    // The parameter bits can be used to control the maximum data value.
    Buffer<T1> a = init<T1, BIG>(t1, 1, WIDTH, HEIGHT);
    Buffer<T2> b = init<T2, BIG>(t2, 2, WIDTH, HEIGHT);

    // Compute the multiplication, check that the results match.
    Func f;
    Var x, y, xi, yi;
    f(x, y) = cast(rt, a(x, y)) * cast(rt, b(x, y));
    if (vector_width > 1) {
        f.vectorize(x, vector_width);
    }
    switch (scheduling) {
    case CPU:
        break;
    case TiledGPU:
        f.compute_root().gpu_tile(x, y, xi, yi, 16, 16);
        break;
    case Hexagon:
        f.compute_root().hexagon();
        break;
    };

    Buffer<RT> r = f.realize({WIDTH, HEIGHT}, target);

    int ecount = 0;
    for (i = 0; i < WIDTH; i++) {
        for (j = 0; j < HEIGHT; j++) {
            T1 ai = a(i, j);
            T2 bi = b(i, j);
            RT ri = r(i, j);
            RT correct = BIG(ai) * BIG(bi);
            if (correct != ri && (ecount++) < 10) {
                std::cerr << (int64_t)ai << "*" << (int64_t)bi << " -> " << (int64_t)ri << " != " << (int64_t)correct << "\n";
                success = false;
            }

            if (i < SWIDTH && j < SHEIGHT) {
                Expr ae = cast<RT>(Expr(ai));
                Expr be = cast<RT>(Expr(bi));
                Expr re = simplify(ae * be);

                if (Call::as_intrinsic(re, {Call::signed_integer_overflow})) {
                    // Don't check correctness of signed integer overflow.
                } else {
                    if (!Internal::equal(re, Expr(ri)) && (ecount++) < 10) {
                        std::cerr << "Compiled a*b != simplified a*b: " << (int64_t)ai
                                  << "*" << (int64_t)bi
                                  << " = " << (int64_t)ri
                                  << " != " << re << "\n";
                        success = false;
                    }
                }
            }
        }
    }

    return success;
}

// division tests division and mod operations.
// BIG should be uint64_t, int64_t or double as appropriate.
// T should be a type known to Halide.
template<typename T, typename BIG>
bool div_mod(int vector_width, ScheduleVariant scheduling, const Target &target) {
    // std::cout << "Test division of " << type_of<T>() << "x" << vector_width << "\n";

    int i, j;
    Type t = type_of<T>();
    BIG minval = minimum<T, BIG>();
    bool success = true;

    // The parameter bits can be used to control the maximum data value.
    Buffer<T> a = init<T, BIG>(t, 1, WIDTH, HEIGHT);
    Buffer<T> b = init<T, BIG>(t, 2, WIDTH, HEIGHT);

    // Filter the input values for the operation to be tested.
    // Cannot divide by zero, so remove zeros from b.
    // Also, cannot divide the most negative number by -1.
    for (i = 0; i < WIDTH; i++) {
        for (j = 0; j < HEIGHT; j++) {
            if (b(i, j) == 0) {
                b(i, j) = 1;  // Replace zero with one
            }
            if (a(i, j) == minval && less_than_zero(minval) && is_negative_one(b(i, j))) {
                a(i, j) = a(i, j) + 1;  // Fix it into range.
            }
        }
    }

    // Compute division and mod, and check they satisfy the requirements of Euclidean division.
    Func f;
    Var x, y, xi, yi;
    f(x, y) = Tuple(a(x, y) / b(x, y), a(x, y) % b(x, y));  // Using Halide division operation.
    if (vector_width > 1) {
        f.vectorize(x, vector_width);
    }
    switch (scheduling) {
    case CPU:
        break;
    case TiledGPU:
        f.compute_root().gpu_tile(x, y, xi, yi, 16, 16);
        break;
    case Hexagon:
        f.compute_root().hexagon();
        break;
    };

    Realization R = f.realize({WIDTH, HEIGHT}, target);
    Buffer<T> q(R[0]);
    Buffer<T> r(R[1]);

    int ecount = 0;
    for (i = 0; i < WIDTH; i++) {
        for (j = 0; j < HEIGHT; j++) {
            T ai = a(i, j);
            T bi = b(i, j);
            T qi = q(i, j);
            T ri = r(i, j);

            if (BIG(qi) * BIG(bi) + ri != ai && (ecount++) < 10) {
                std::cerr << "\ndiv_mod failure for t=" << target << " w=" << vector_width << " scheduling=" << (int)scheduling << ":\n";
                std::cerr << "(a/b)*b + a%b != a; a, b = " << (int64_t)ai
                          << ", " << (int64_t)bi
                          << "; q, r = " << (int64_t)qi
                          << ", " << (int64_t)ri << "\n";
                success = false;
            } else if (!(0 <= ri &&
                         (t.is_min((int64_t)bi) || ri < (T)std::abs((int64_t)bi))) &&
                       (ecount++) < 10) {
                std::cerr << "\ndiv_mod failure for t=" << target << " w=" << vector_width << " scheduling=" << (int)scheduling << ":\n";
                std::cerr << "ri is not in the range [0, |b|); a, b = " << (int64_t)ai
                          << ", " << (int64_t)bi
                          << "; q, r = " << (int64_t)qi
                          << ", " << (int64_t)ri << "\n";
                success = false;
            }

            if (i < SWIDTH && j < SHEIGHT) {
                Expr ae = Expr(ai);
                Expr be = Expr(bi);
                Expr qe = simplify(ae / be);
                Expr re = simplify(ae % be);

                if (!Internal::equal(qe, Expr(qi)) && (ecount++) < 10) {
                    std::cerr << "\ndiv_mod failure for t=" << target << " w=" << vector_width << " scheduling=" << (int)scheduling << ":\n";
                    std::cerr << "Compiled a/b != simplified a/b: " << (int64_t)ai
                              << "/" << (int64_t)bi
                              << " = " << (int64_t)qi
                              << " != " << qe << "\n";
                    success = false;
                } else if (!Internal::equal(re, Expr(ri)) && (ecount++) < 10) {
                    std::cerr << "\ndiv_mod failure for t=" << target << " w=" << vector_width << " scheduling=" << (int)scheduling << ":\n";
                    std::cerr << "Compiled a%b != simplified a%b: " << (int64_t)ai
                              << "%" << (int64_t)bi
                              << " = " << (int64_t)ri
                              << " != " << re << "\n";
                    success = false;
                }
            }
        }
    }

    return success;
}

// f_mod tests floating mod operations.
// BIG should be double.
// T should be a type known to Halide.
template<typename T, typename BIG>
bool f_mod() {
    // std::cout << "Test mod of " << type_of<T>() << "\n";

    int i, j;
    Type t = type_of<T>();
    bool success = true;

    Buffer<T> a = init<T, BIG>(t, 1, WIDTH, HEIGHT);
    Buffer<T> b = init<T, BIG>(t, 2, WIDTH, HEIGHT);
    Buffer<T> out(WIDTH, HEIGHT);

    // Filter the input values for the operation to be tested.
    // Cannot divide by zero, so remove zeros from b.
    for (i = 0; i < WIDTH; i++) {
        for (j = 0; j < HEIGHT; j++) {
            if (b(i, j) == 0.0) {
                b(i, j) = 1.0;  // Replace zero with one.
            }
        }
    }

    // Compute modulus result and check it.
    Func f;
    f(_) = a(_) % b(_);  // Using Halide mod operation.
    f.realize(out);

    // Explicit checks of the simplifier for consistency with runtime computation
    int ecount = 0;
    for (i = 0; i < std::min(SWIDTH, WIDTH); i++) {
        for (j = 0; j < std::min(SHEIGHT, HEIGHT); j++) {
            T arg_a = a(i, j);
            T arg_b = b(i, j);
            T v = out(i, j);
            Expr in_e = cast<T>((float)arg_a) % cast<T>((float)arg_b);
            Expr e = simplify(in_e);
            Expr eout = cast<T>((float)v);
            if (!Internal::equal(e, eout) && (ecount++) < 10) {
                Expr diff = simplify(e - eout);
                Expr smalldiff = simplify(diff < (float)(0.000001) && diff > (float)(-0.000001));
                if (!Internal::is_const_one(smalldiff)) {
                    std::cerr << "simplify(" << in_e << ") yielded " << e << "; expected " << eout << "\n";
                    std::cerr << "          difference=" << diff << "\n";
                    success = false;
                }
            }
        }
    }

    return success;
}

struct Task {
    std::function<bool()> fn;
};

void add_test_mul(int vector_width, ScheduleVariant scheduling, Target target, std::vector<Task> &tasks) {
    // Non-widening multiplication.
    tasks.push_back({[=]() { return mul<uint8_t, uint8_t, uint8_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<uint16_t, uint16_t, uint16_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<uint32_t, uint32_t, uint32_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<int8_t, int8_t, int8_t, int64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<int16_t, int16_t, int16_t, int64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<int32_t, int32_t, int32_t, int64_t>(vector_width, scheduling, target); }});

    // Widening multiplication.
    tasks.push_back({[=]() { return mul<uint8_t, uint8_t, uint16_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<uint16_t, uint16_t, uint32_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<int8_t, int8_t, int16_t, int64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<int16_t, int16_t, int32_t, int64_t>(vector_width, scheduling, target); }});

    // Mixed multiplication. This isn't all of the possible mixed
    // multiplications, but it covers all of the special cases we
    // have in Halide.
    tasks.push_back({[=]() { return mul<uint16_t, uint32_t, uint32_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<int16_t, int32_t, int32_t, int64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return mul<uint16_t, int32_t, int32_t, uint64_t>(vector_width, scheduling, target); }});
}

void add_test_div_mod(int vector_width, ScheduleVariant scheduling, Target target, std::vector<Task> &tasks) {
    tasks.push_back({[=]() { return div_mod<uint8_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return div_mod<uint16_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return div_mod<uint32_t, uint64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return div_mod<int8_t, int64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return div_mod<int16_t, int64_t>(vector_width, scheduling, target); }});
    tasks.push_back({[=]() { return div_mod<int32_t, int64_t>(vector_width, scheduling, target); }});
}

int main(int argc, char **argv) {
    Target target = get_jit_target_from_environment();

    ScheduleVariant scheduling = CPU;
    if (target.has_gpu_feature()) {
        scheduling = TiledGPU;
    } else if (target.has_feature(Target::HVX)) {
        scheduling = Hexagon;
    }

    // Test multiplication and division
    std::vector<int> vector_widths = {1};
    if (target.has_feature(Target::Metal) ||
        target.has_feature(Target::D3D12Compute) ||
        target.has_feature(Target::Vulkan) ||
        target.has_feature(Target::WebGPU)) {
        for (int i = 2; i <= 4; i *= 2) {
            vector_widths.push_back(i);
        }
    } else if (target.has_feature(Target::HVX)) {
        vector_widths.push_back(128);
    } else {
        for (int i = 2; i <= 16; i *= 2) {
            vector_widths.push_back(i);
        }
    }

    std::vector<Task> tasks;
    for (int vector_width : vector_widths) {
        add_test_mul(vector_width, scheduling, target, tasks);
    }
    for (int vector_width : vector_widths) {
        add_test_div_mod(vector_width, scheduling, target, tasks);
    }

    using Sharder = Halide::Internal::Test::Sharder;
    Sharder sharder;

    std::vector<std::future<bool>> futures;

    Halide::Tools::ThreadPool<bool> pool;
    for (size_t t = 0; t < tasks.size(); t++) {
        if (!sharder.should_run(t)) continue;
        const auto &task = tasks.at(t);
        futures.push_back(pool.async(task.fn));
    }

    for (auto &f : futures) {
        if (!f.get()) {
            return 1;
        }
    }

    printf("Success!\n");
    return 0;
}