1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
#include "Halide.h"
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
Var x, y;
{
// Define a reduction with two update steps
Func f;
f(x) = sin(x);
RDom r1(1, 10);
Expr xl = r1; // left to right pass
Expr xr = 10 - r1; // right to left pass
f(xl) = f(xl - 1) + f(xl);
f(xr) = f(xr + 1) + f(xr);
Buffer<float> result = f.realize({11});
// The same thing in C
float ref[11];
for (int i = 0; i < 11; i++) {
ref[i] = sinf(i);
}
for (int i = 1; i < 11; i++) {
ref[i] += ref[i - 1];
}
for (int i = 9; i >= 0; i--) {
ref[i] += ref[i + 1];
}
for (int i = 0; i < 11; i++) {
if (fabs(result(i) - ref[i]) > 0.0001f) {
printf("result(%d) = %f instead of %f\n",
i, result(i), ref[i]);
return 1;
}
}
}
{
// Define a reduction that fills an array, integrates it, then
// manually change certain values. One of the values will
// depend on another function.
Func f, g;
g(x) = x * x;
f(x) = x;
// Integrate from 1 to 10
RDom r(1, 10);
f(r) = f(r) + f(r - 1);
// Clobber two values
f(17) = 8;
f(109) = 4;
// Clobber a range using another func
RDom r2(4, 5);
f(r2) = g(r2);
g.compute_at(f, r2);
Buffer<int> result = f.realize({110});
int correct[110];
for (int i = 0; i < 110; i++) {
correct[i] = i;
}
for (int i = 1; i < 11; i++) {
correct[i] += correct[i - 1];
}
correct[17] = 8;
correct[109] = 4;
for (int i = 4; i < 9; i++) {
correct[i] = i * i;
}
for (int i = 0; i < 110; i++) {
if (correct[i] != result(i)) {
printf("result(%d) = %d instead of %d\n",
i, result(i), correct[i]);
return 1;
}
}
}
{
// Create a fully unrolled fibonacci routine composed almost
// entirely of single assignment statements. The horror!
Func f;
f(x) = 1;
for (int i = 2; i < 20; i++) {
f(i) = f(i - 1) + f(i - 2);
}
Buffer<int> result = f.realize({20});
int ref[20];
ref[0] = 1;
ref[1] = 1;
for (int i = 2; i < 20; i++) {
ref[i] = ref[i - 1] + ref[i - 2];
if (ref[i] != result(i)) {
printf("fibonacci(%d) = %d instead of %d\n",
i, result(i), ref[i]);
return 1;
}
}
}
{
// Make an integral image
Func f;
f(x, y) = sin(x + y);
RDom r(1, 99);
f(x, r) += f(x, r - 1);
f(r, y) += f(r - 1, y);
// Walk down the image in vectors
f.update(0).vectorize(x, 4);
// Walk across the image in parallel.
f.update(1).reorder(r.x, y).parallel(y);
Buffer<float> result = f.realize({100, 100});
// Now the equivalent in C (cheating and using Halide for the initial image)
Buffer<float> ref = lambda(x, y, sin(x + y)).realize({100, 100});
for (int y = 1; y < 100; y++) {
for (int x = 0; x < 100; x++) {
ref(x, y) += ref(x, y - 1);
}
}
for (int y = 0; y < 100; y++) {
for (int x = 1; x < 100; x++) {
ref(x, y) += ref(x - 1, y);
}
}
// Check they're the same
for (int y = 0; y < 100; y++) {
for (int x = 0; x < 100; x++) {
if (fabs(ref(x, y) - result(x, y)) > 0.0001f) {
printf("integral image at (%d, %d) = %f instead of %f\n",
x, y, result(x, y), ref(x, y));
return 1;
}
}
}
}
printf("Success!\n");
return 0;
}
|