File: predicated_store_load.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (557 lines) | stat: -rw-r--r-- 14,814 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#include "Halide.h"
#include "check_call_graphs.h"

#include <cstdio>
#include <functional>

namespace {

using std::map;
using std::string;
using std::vector;

using namespace Halide;
using namespace Halide::Internal;

class CountPredicatedStoreLoad : public IRVisitor {
public:
    int store_count;
    int load_count;

    CountPredicatedStoreLoad()
        : store_count(0), load_count(0) {
    }

protected:
    using IRVisitor::visit;

    void visit(const Load *op) override {
        if (!is_const_one(op->predicate)) {
            load_count++;
        }
        IRVisitor::visit(op);
    }

    void visit(const Store *op) override {
        if (!is_const_one(op->predicate)) {
            store_count++;
        }
        IRVisitor::visit(op);
    }
};

class CheckPredicatedStoreLoad : public IRMutator {
    int expected_store_count;
    int expected_load_count;

public:
    CheckPredicatedStoreLoad(int store, int load)
        : expected_store_count(store), expected_load_count(load) {
    }
    using IRMutator::mutate;

    Stmt mutate(const Stmt &s) override {
        CountPredicatedStoreLoad c;
        s.accept(&c);

        if (expected_store_count != c.store_count) {
            printf("There were %d predicated stores; expect %d predicated stores\n",
                   c.store_count, expected_store_count);
            exit(1);
        }
        if (expected_load_count != c.load_count) {
            printf("There were %d predicated loads; expect %d predicated loads\n",
                   c.load_count, expected_load_count);
            exit(1);
        }
        return s;
    }
};

int predicated_tail_test(const Target &t) {
    int size = 73;
    for (auto i : {TailStrategy::Predicate, TailStrategy::PredicateLoads, TailStrategy::PredicateStores}) {
        Var x("x"), y("y");
        Func f("f"), g("g");

        ImageParam p(Int(32), 2);

        f(x, y) = p(x, y);

        // We need a wrapper to avoid getting the bounds inflated by the rounding-up cases by realize.
        g(x, y) = f(x, y);
        f.compute_root();

        const int vector_size = 32;
        f.vectorize(x, vector_size, i);
        if (t.has_feature(Target::HVX)) {
            f.hexagon();
        }
        int predicated_loads = i != TailStrategy::PredicateStores ? 1 : 0;
        int predicated_stores = i != TailStrategy::PredicateLoads ? 1 : 0;
        g.add_custom_lowering_pass(new CheckPredicatedStoreLoad(predicated_stores, predicated_loads));

        int buffer_size = size;
        if (i == TailStrategy::PredicateStores) {
            buffer_size = ((buffer_size + vector_size - 1) / vector_size) * vector_size;
        }

        Buffer<int> input(buffer_size, size);
        input.fill([](int x, int y) { return x; });
        p.set(input);

        Buffer<int> im = g.realize({size, size});
        auto func = [](int x, int y) {
            return x;
        };
        if (check_image(im, func)) {
            return 1;
        }
    }
    return 0;
}

int predicated_tail_with_scalar_test(const Target &t) {
    int size = 73;
    Var x("x"), y("y");
    Func f("f"), g("g");

    g(x) = 10;
    f(x, y) = x + g(0);

    g.compute_at(f, y);
    f.vectorize(x, 32, TailStrategy::Predicate);
    if (t.has_feature(Target::HVX)) {
        f.hexagon();
    }
    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(1, 0));

    Buffer<int> im = f.realize({size, size});
    auto func = [](int x, int y) {
        return x + 10;
    };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int vectorized_predicated_store_scalarized_predicated_load_test(const Target &t) {
    Var x("x"), y("y");
    Func f("f"), g("g"), ref("ref");

    g(x, y) = x + y;
    g.compute_root();

    RDom r(0, 100, 0, 100);
    r.where(r.x + r.y < r.x * r.y);

    ref(x, y) = 10;
    ref(r.x, r.y) += g(2 * r.x, r.y) + g(2 * r.x + 1, r.y);
    Buffer<int> im_ref = ref.realize({170, 170});

    f(x, y) = 10;
    f(r.x, r.y) += g(2 * r.x, r.y) + g(2 * r.x + 1, r.y);

    f.update(0).vectorize(r.x, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
    }

    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(2, 6));

    Buffer<int> im = f.realize({170, 170});
    auto func = [im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int vectorized_dense_load_with_stride_minus_one_test(const Target &t) {
    int size = 73;
    Var x("x"), y("y");
    Func f("f"), g("g"), ref("ref");

    g(x, y) = x * y;
    g.compute_root();

    ref(x, y) = select(x < 23, g(size - x, y) * 2 + g(20 - x, y), undef<int>());
    Buffer<int> im_ref = ref.realize({size, size});

    f(x, y) = select(x < 23, g(size - x, y) * 2 + g(20 - x, y), undef<int>());

    f.vectorize(x, 32, TailStrategy::Predicate);
    if (t.has_feature(Target::HVX)) {
        f.hexagon();
    }
    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(3, 6));

    Buffer<int> im = f.realize({size, size});
    auto func = [&im_ref, &im](int x, int y, int z) {
        // For x >= 23, the buffer is undef
        return (x < 23) ? im_ref(x, y, z) : im(x, y, z);
    };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int multiple_vectorized_predicate_test(const Target &t) {
    int size = 100;
    Var x("x"), y("y");
    Func f("f"), g("g"), ref("ref");

    g(x, y) = x * y;
    g.compute_root();

    RDom r(0, size, 0, size);
    r.where(r.x + r.y < 57);
    r.where(r.x * r.y + r.x * r.x < 490);

    ref(x, y) = 10;
    ref(r.x, r.y) = g(size - r.x, r.y) * 2 + g(67 - r.x, r.y);
    Buffer<int> im_ref = ref.realize({size, size});

    f(x, y) = 10;
    f(r.x, r.y) = g(size - r.x, r.y) * 2 + g(67 - r.x, r.y);

    f.update(0).vectorize(r.x, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
    }
    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(1, 2));

    Buffer<int> im = f.realize({size, size});
    auto func = [&im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int scalar_load_test(const Target &t) {
    Var x("x"), y("y");
    Func f("f"), g("g"), ref("ref");

    g(x, y) = x + y;
    g.compute_root();

    RDom r(0, 80, 0, 80);
    r.where(r.x + r.y < 48);

    ref(x, y) = 10;
    ref(r.x, r.y) += 1 + max(g(0, 1), g(2 * r.x + 1, r.y));
    Buffer<int> im_ref = ref.realize({160, 160});

    f(x, y) = 10;
    f(r.x, r.y) += 1 + max(g(0, 1), g(2 * r.x + 1, r.y));

    f.update(0).vectorize(r.x, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
    }

    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(1, 2));

    Buffer<int> im = f.realize({160, 160});
    auto func = [im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int scalar_store_test(const Target &t) {
    Var x("x"), y("y");
    Func f("f"), g("g"), ref("ref");

    g(x, y) = x + y;
    g.compute_root();

    RDom r(0, 80, 0, 80);
    r.where(r.x + r.y < 48);

    ref(x, y) = 10;
    ref(13, 13) = max(g(0, 1), g(2 * r.x + 1, r.y));
    Buffer<int> im_ref = ref.realize({160, 160});

    f(x, y) = 10;
    f(13, 13) = max(g(0, 1), g(2 * r.x + 1, r.y));

    f.update(0).allow_race_conditions();

    f.update(0).vectorize(r.x, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
    }

    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(1, 1));

    Buffer<int> im = f.realize({160, 160});
    auto func = [im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int not_dependent_on_vectorized_var_test(const Target &t) {
    Var x("x"), y("y"), z("z");
    Func f("f"), g("g"), ref("ref");

    g(x, y, z) = x + y + z;
    g.compute_root();

    RDom r(0, 80, 0, 80, 0, 80);
    r.where(r.z * r.z < 47);

    ref(x, y, z) = 10;
    ref(r.x, r.y, 1) = max(g(0, 1, 2), g(r.x + 1, r.y, 2));
    Buffer<int> im_ref = ref.realize({160, 160, 160});

    f(x, y, z) = 10;
    f(r.x, r.y, 1) = max(g(0, 1, 2), g(r.x + 1, r.y, 2));

    f.update(0).allow_race_conditions();

    f.update(0).vectorize(r.z, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
    }
    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(0, 0));

    Buffer<int> im = f.realize({160, 160, 160});
    auto func = [im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int no_op_store_test(const Target &t) {
    Var x("x"), y("y");
    Func f("f"), ref("ref");

    RDom r(0, 80, 0, 80);
    r.where(r.x + r.y < 47);

    ref(x, y) = x + y;
    ref(2 * r.x + 1, r.y) = ref(2 * r.x + 1, r.y);
    ref(2 * r.x, 3 * r.y) = ref(2 * r.x, 3 * r.y);
    Buffer<int> im_ref = ref.realize({240, 240});

    f(x, y) = x + y;
    f(2 * r.x + 1, r.y) = f(2 * r.x + 1, r.y);
    f(2 * r.x, 3 * r.y) = f(2 * r.x, 3 * r.y);

    f.update(0).vectorize(r.x, 32);
    f.update(1).vectorize(r.y, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
        f.update(1).hexagon();
    }

    Buffer<int> im = f.realize({240, 240});
    auto func = [im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int vectorized_predicated_predicate_with_pure_call_test(const Target &t) {
    Var x("x"), y("y");
    Func f("f"), g("g"), ref("ref");

    g(x, y) = x + y;
    g.compute_root();

    RDom r(0, 100, 0, 100);
    r.where(r.x + r.y < r.x * r.y);

    ref(x, y) = 10;
    ref(r.x, r.y) += abs(r.x * r.y) + g(2 * r.x + 1, r.y);
    Buffer<int> im_ref = ref.realize({160, 160});

    f(x, y) = 10;
    f(r.x, r.y) += abs(r.x * r.y) + g(2 * r.x + 1, r.y);

    f.update(0).vectorize(r.x, 32);
    if (t.has_feature(Target::HVX)) {
        f.update(0).hexagon();
    }
    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(2, 4));

    Buffer<int> im = f.realize({160, 160});
    auto func = [im_ref](int x, int y, int z) { return im_ref(x, y, z); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int vectorized_predicated_load_const_index_test(const Target &t) {
    Buffer<int> in(100, 100);
    for (int y = 0; y < 100; y++) {
        for (int x = 0; x < 100; x++) {
            in(x, y) = rand();
        }
    }

    Func f("f"), ref("ref");
    Var x("x"), y("y");
    ImageParam input(Int(32), 2, "input");

    input.set(in);

    RDom r(0, 100);

    ref(x, y) = x + y;
    ref(r.x, y) = clamp(select((r.x % 2) == 0, r.x, y) + input(r.x % 2, y), 0, 10);
    Buffer<int> im_ref = ref.realize({100, 100});

    f(x, y) = x + y;
    f(r.x, y) = clamp(select((r.x % 2) == 0, r.x, y) + input(r.x % 2, y), 0, 10);

    f.update().vectorize(r.x, 32);
    if (t.has_feature(Target::HVX)) {
        f.update().hexagon();
    }
    f.add_custom_lowering_pass(new CheckPredicatedStoreLoad(1, 2));

    Buffer<int> im = f.realize({100, 100});
    auto func = [im_ref](int x, int y) { return im_ref(x, y); };
    if (check_image(im, func)) {
        return 1;
    }
    return 0;
}

int vectorized_predicated_load_lut_test(const Target &t) {
    if (t.arch != Target::X86) {
        // This test will fail on Hexagon as the LUT is larger than 16 bits.
        // Since using less than 16-bit LUT will make the predicate on the
        // vector store/load disappear, only run the test for X86.
        return 0;
    }

    constexpr int vector_size = 4;
    constexpr int lut_height = vector_size + 2;  // Any non-even multiple of vector-size will do.
    constexpr int dst_len = 100;

    Buffer<int32_t> lut(2, lut_height);
    lut.fill(0);

    Var x("x");
    Func dst("dst");

    RDom r(0, lut_height);

    dst(x) = 0.f;
    dst(clamp(lut(0, r), 0, dst_len - 1)) += 1.f;

    dst.output_buffer().dim(0).set_min(0).set_extent(dst_len);

    // Ignore the race condition so we can have predicated vectorized
    // LUT loads on both LHS and RHS of the predicated vectorized store
    dst.update().allow_race_conditions().vectorize(r, vector_size);
    dst.add_custom_lowering_pass(new CheckPredicatedStoreLoad(1, 2));

    dst.realize({dst_len});

    return 0;
}

int predicated_atomic_store_test(const Target &t) {
    // We don't support atomic predicated stores, so ensure that we don't
    // generate them. See https://github.com/halide/Halide/issues/8280
    ImageParam in(Float(32), 1);
    Func f;
    Var x;
    RDom r(0, 20);

    f(x) = 0.f;
    f(x) += in(r) + x;
    f.update().vectorize(x, 8, TailStrategy::GuardWithIf).atomic().parallel(r);

    // This will cause an internal_error in the LLVM backend if we pass a
    // predicated atomic store down to codegen.
    f.compile_jit(t);
    return 0;
}

}  // namespace

int main(int argc, char **argv) {
    Target t = get_jit_target_from_environment();

    printf("Running vectorized dense load test\n");
    if (predicated_tail_test(t) != 0) {
        return 1;
    }

    printf("Running vectorized dense load with scalar test\n");
    if (predicated_tail_with_scalar_test(t) != 0) {
        return 1;
    }

    printf("Running vectorized dense load with stride minus one test\n");
    if (vectorized_dense_load_with_stride_minus_one_test(t) != 0) {
        return 1;
    }

    printf("Running multiple vectorized predicate test\n");
    if (multiple_vectorized_predicate_test(t) != 0) {
        return 1;
    }

    printf("Running vectorized predicated store scalarized predicated load test\n");
    if (vectorized_predicated_store_scalarized_predicated_load_test(t) != 0) {
        return 1;
    }

    printf("Running scalar load test\n");
    if (scalar_load_test(t) != 0) {
        return 1;
    }

    printf("Running scalar store test\n");
    if (scalar_store_test(t) != 0) {
        return 1;
    }

    printf("Running not dependent on vectorized var test\n");
    if (not_dependent_on_vectorized_var_test(t) != 0) {
        return 1;
    }

    printf("Running no-op store test\n");
    if (no_op_store_test(t) != 0) {
        return 1;
    }

    printf("Running vectorized predicated with pure call test\n");
    if (vectorized_predicated_predicate_with_pure_call_test(t) != 0) {
        return 1;
    }

    printf("Running vectorized predicated load with constant index test\n");
    if (vectorized_predicated_load_const_index_test(t) != 0) {
        return 1;
    }

    printf("Running vectorized predicated load lut test\n");
    if (vectorized_predicated_load_lut_test(t) != 0) {
        return 1;
    }

    printf("predicated atomic store test\n");
    if (predicated_atomic_store_test(t) != 0) {
        return 1;
    }

    printf("Success!\n");
    return 0;
}