File: pytorch.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (244 lines) | stat: -rw-r--r-- 6,910 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include "Halide.h"
#include "halide_test_dirs.h"
#include <fstream>

using namespace Halide;

namespace {

std::string read_entire_file(const std::string &pathname) {
    std::ifstream f(pathname, std::ios::in | std::ios::binary);
    std::string result;

    f.seekg(0, std::ifstream::end);
    size_t size = f.tellg();
    result.resize(size);
    f.seekg(0, std::ifstream::beg);
    f.read(result.data(), result.size());
    if (!f.good()) {
        std::cerr << "Unable to read file: " << pathname;
        exit(1);
    }
    f.close();
    // Normalize file to Unix line endings
    result = Internal::replace_all(result, "\r\n", "\n");
    return result;
}

void compare_src(const std::string &src, const std::string &correct_src) {
    if (src != correct_src) {
        int diff = 0;
        while (src[diff] == correct_src[diff]) {
            diff++;
        }
        int diff_end = diff + 1;
        while (diff > 0 && src[diff] != '\n') {
            diff--;
        }
        while (diff_end < (int)src.size() && src[diff_end] != '\n') {
            diff_end++;
        }

        std::cerr
            << "Correct source code:\n"
            << correct_src
            << "Actual source code:\n"
            << src
            << "Difference starts at:" << diff << "\n"
            << "Correct: " << correct_src.substr(diff, diff_end - diff) << "\n"
            << "Actual: " << src.substr(diff, diff_end - diff) << "\n";

        exit(1);
    }
}

}  // namespace

int main(int argc, char **argv) {
    Param<float> alpha("alpha");
    Param<int32_t> beta("beta");
    Var x("x");

    Func buf("buf");
    buf(x) = cast<int32_t>(alpha + cast<float>(beta));

    {
        // We are using a fixed target here (rather than "host") since
        // we are crosscompiling and want a uniform result everywhere.
        Target t = Target("x86-64-linux");

        std::string pytorch_out = Internal::get_test_tmp_dir() + "pytorch_test1.pytorch.h";
        Internal::ensure_no_file_exists(pytorch_out);

        std::vector<Argument> args{alpha, beta};
        buf.compile_to({{OutputFileType::pytorch_wrapper, pytorch_out}}, args, "test1", t);

        Internal::assert_file_exists(pytorch_out);
        std::string actual = read_entire_file(pytorch_out);

        std::string expected =
            R"GOLDEN_CODE(#include "HalideBuffer.h"
#include "HalidePyTorchHelpers.h"

struct halide_buffer_t;
struct halide_filter_metadata_t;

#ifndef HALIDE_MUST_USE_RESULT
#ifdef __has_attribute
#if __has_attribute(nodiscard)
#define HALIDE_MUST_USE_RESULT [[nodiscard]]
#elif __has_attribute(warn_unused_result)
#define HALIDE_MUST_USE_RESULT __attribute__((warn_unused_result))
#else
#define HALIDE_MUST_USE_RESULT
#endif
#else
#define HALIDE_MUST_USE_RESULT
#endif
#endif

#ifndef HALIDE_FUNCTION_ATTRS
#define HALIDE_FUNCTION_ATTRS
#endif



#ifdef __cplusplus
extern "C" {
#endif

HALIDE_FUNCTION_ATTRS
int test1(float _alpha, int32_t _beta, struct halide_buffer_t *_buf_buffer);

HALIDE_FUNCTION_ATTRS
int test1_argv(void **args);

HALIDE_FUNCTION_ATTRS
const struct halide_filter_metadata_t *test1_metadata();

#ifdef __cplusplus
}  // extern "C"
#endif

HALIDE_FUNCTION_ATTRS
inline int test1_th_(float _alpha, int32_t _beta, at::Tensor &_buf) {
    void* __user_context = nullptr;

    // Check tensors have contiguous memory and are on the correct device
    HLPT_CHECK_CONTIGUOUS(_buf);

    // Wrap tensors in Halide buffers
    Halide::Runtime::Buffer<int32_t> _buf_buffer = Halide::PyTorch::wrap<int32_t>(_buf);

    // Run Halide pipeline
    int err = test1(_alpha, _beta, _buf_buffer);

    AT_ASSERTM(err == 0, "Halide call failed");
    return 0;
}
)GOLDEN_CODE";

        compare_src(actual, expected);
    }

    {
        // We are using an explicit target here (rather than "host") to avoid sniffing
        // the system for capabilities; in particular, we don't care what Cuda capabilities
        // the system has, and don't want to initialize Cuda to find out. (Since this test
        // is just a crosscompilation for generated C++ code, this is fine.)
        Target t = Target("x86-64-linux-cuda-user_context");

        std::string pytorch_out = Internal::get_test_tmp_dir() + "pytorch_test2.pytorch.h";
        Internal::ensure_no_file_exists(pytorch_out);

        std::vector<Argument> args{alpha, beta};
        buf.compile_to({{OutputFileType::pytorch_wrapper, pytorch_out}}, args, "test2", t);

        Internal::assert_file_exists(pytorch_out);
        std::string actual = read_entire_file(pytorch_out);

        std::string expected =
            R"GOLDEN_CODE(#include "ATen/cuda/CUDAContext.h"
#include "HalidePyTorchCudaHelpers.h"
#include "HalideBuffer.h"
#include "HalidePyTorchHelpers.h"

struct halide_buffer_t;
struct halide_filter_metadata_t;

#ifndef HALIDE_MUST_USE_RESULT
#ifdef __has_attribute
#if __has_attribute(nodiscard)
#define HALIDE_MUST_USE_RESULT [[nodiscard]]
#elif __has_attribute(warn_unused_result)
#define HALIDE_MUST_USE_RESULT __attribute__((warn_unused_result))
#else
#define HALIDE_MUST_USE_RESULT
#endif
#else
#define HALIDE_MUST_USE_RESULT
#endif
#endif

#ifndef HALIDE_FUNCTION_ATTRS
#define HALIDE_FUNCTION_ATTRS
#endif



#ifdef __cplusplus
extern "C" {
#endif

HALIDE_FUNCTION_ATTRS
int test2(void const *__user_context, float _alpha, int32_t _beta, struct halide_buffer_t *_buf_buffer);

HALIDE_FUNCTION_ATTRS
int test2_argv(void **args);

HALIDE_FUNCTION_ATTRS
const struct halide_filter_metadata_t *test2_metadata();

#ifdef __cplusplus
}  // extern "C"
#endif

HALIDE_FUNCTION_ATTRS
inline int test2_th_(float _alpha, int32_t _beta, at::Tensor &_buf) {
    // Setup CUDA
    int device_id = at::cuda::current_device();
    CUcontext ctx = 0;
    CUresult res = cuCtxGetCurrent(&ctx);
    AT_ASSERTM(res == 0, "Could not acquire CUDA context");
    cudaStream_t stream = at::cuda::getCurrentCUDAStream(device_id);
    struct UserContext { int device_id; CUcontext *cuda_context; cudaStream_t *stream; } user_ctx;
    user_ctx.device_id = device_id;
    user_ctx.cuda_context = &ctx;
    user_ctx.stream = &stream;
    void* __user_context = (void*) &user_ctx;

    // Check tensors have contiguous memory and are on the correct device
    HLPT_CHECK_CONTIGUOUS(_buf);
    HLPT_CHECK_DEVICE(_buf, device_id);

    // Wrap tensors in Halide buffers
    Halide::Runtime::Buffer<int32_t> _buf_buffer = Halide::PyTorch::wrap_cuda<int32_t>(_buf);

    // Run Halide pipeline
    int err = test2(__user_context, _alpha, _beta, _buf_buffer);

    AT_ASSERTM(err == 0, "Halide call failed");
    // Make sure data is on device
    AT_ASSERTM(!_buf_buffer.host_dirty(),"device not synchronized for buffer _buf, make sure all update stages are explicitly computed on GPU.");
    _buf_buffer.device_detach_native();

    return 0;
}
)GOLDEN_CODE";

        compare_src(actual, expected);
    }

    printf("Success!\n");
    return 0;
}