1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
#include "Halide.h"
#include <iostream>
#include <limits>
#include <stdio.h>
// Disable a warning in MSVC that we know will be triggered here.
#ifdef _MSC_VER
#pragma warning(disable : 4756) // "overflow in constant arithmetic"
#endif
using namespace Halide;
using namespace Halide::ConciseCasts;
typedef Expr (*cast_maker_t)(Expr);
// Local alias for terseness. This must be used any time the
// cast could be a float->int conversion that might not fit in the destination.
template<typename DST, typename SRC>
DST safe_cast(SRC s) {
return Internal::safe_numeric_cast<DST, SRC>(s);
}
template<typename source_t, typename target_t>
void test_saturating() {
source_t source_min, source_max;
if (std::numeric_limits<source_t>::has_infinity) {
source_max = std::numeric_limits<source_t>::infinity();
source_min = -source_max;
} else {
source_min = std::numeric_limits<source_t>::lowest();
source_max = std::numeric_limits<source_t>::max();
}
target_t target_min, target_max;
if (std::numeric_limits<target_t>::has_infinity) {
target_max = std::numeric_limits<target_t>::infinity();
target_min = -target_max;
} else {
target_min = std::numeric_limits<target_t>::lowest();
target_max = std::numeric_limits<target_t>::max();
}
Buffer<source_t> in(7);
in(0) = (source_t)0;
in(1) = (source_t)1;
// This can intentionally change the value if source_t is unsigned
in(2) = (source_t)-1;
in(3) = safe_cast<source_t>(source_max);
in(4) = safe_cast<source_t>(source_min);
// These two can intentionally change the value if source_t is smaller than target_t
in(5) = safe_cast<source_t>(target_min);
in(6) = safe_cast<source_t>(target_max);
Var x;
Func f;
f(x) = saturating_cast<target_t>(in(x));
Buffer<target_t> result = f.realize({7});
for (int32_t i = 0; i < 7; i++) {
bool source_signed = std::numeric_limits<source_t>::is_signed;
bool target_signed = std::numeric_limits<target_t>::is_signed;
bool source_floating = !std::numeric_limits<source_t>::is_integer;
bool target_floating = !std::numeric_limits<target_t>::is_integer;
target_t correct_result;
if (source_floating) {
double bounded_lower = std::max((double)in(i), (double)target_min);
if (bounded_lower >= (double)target_max) {
correct_result = target_max;
} else {
correct_result = (target_t)bounded_lower;
}
} else if (target_floating) {
correct_result = (target_t)std::min((double)in(i), (double)target_max);
} else if (source_signed == target_signed) {
if (sizeof(source_t) > sizeof(target_t)) {
correct_result = (target_t)std::min(std::max(in(i),
safe_cast<source_t>(target_min)),
safe_cast<source_t>(target_max));
} else {
correct_result = (target_t)in(i);
}
} else {
if (source_signed) {
source_t val = std::max(in(i), (source_t)0);
if (sizeof(source_t) > sizeof(target_t)) {
correct_result = (target_t)std::min(val, safe_cast<source_t>(target_max));
} else {
correct_result = (target_t)val;
}
} else {
if (sizeof(source_t) >= sizeof(target_t)) {
correct_result = (target_t)std::min(in(i), safe_cast<source_t>(target_max));
} else { // dest is signed, but larger so unsigned source_t guaranteed to fit
correct_result = std::min((target_t)in(i), target_max);
}
}
}
// Do a simpler verification as well if a 64-bit int will hold everything
if (!target_floating && (sizeof(target_t) < 8 || target_signed) &&
!source_floating && (sizeof(source_t) < 8 || source_signed)) {
int64_t simpler_correct_result;
simpler_correct_result = std::min(std::max((int64_t)in(i),
(int64_t)target_min),
(int64_t)target_max);
if (simpler_correct_result != (int64_t)correct_result) {
std::cout << "Simpler verification failed for index " << i
<< " correct_result is " << correct_result
<< " correct_result casted to int64_t is " << (int64_t)correct_result
<< " simpler_correct_result is " << simpler_correct_result << "\n";
std::cout << "in(i) " << in(i)
<< " target_min " << target_min
<< " target_max " << target_max << "\n";
}
assert(simpler_correct_result == (int64_t)correct_result);
}
if (result(i) != correct_result) {
std::cout << "Match failure at index " << i
<< " got " << result(i)
<< " expected " << correct_result
<< " for input " << in(i) << "\n";
}
assert(result(i) == correct_result);
}
}
template<typename source_t, typename target_t>
void test_concise(cast_maker_t cast_maker, bool saturating) {
source_t source_min = std::numeric_limits<source_t>::min();
source_t source_max = std::numeric_limits<source_t>::max();
target_t target_min = std::numeric_limits<target_t>::min();
target_t target_max = std::numeric_limits<target_t>::max();
Buffer<source_t> in(7);
in(0) = (source_t)0;
in(1) = (source_t)1;
// This can intentionally change the value if source_t is unsigned
in(2) = (source_t)-1;
in(3) = source_max;
in(4) = source_min;
// These two can intentionally change the value if source_t is smaller than target_t
in(5) = safe_cast<source_t>(target_min);
in(6) = safe_cast<source_t>(target_max);
Var x;
Func f;
f(x) = cast_maker(in(x));
Buffer<target_t> result = f.realize({7});
for (int32_t i = 0; i < 7; i++) {
bool source_signed = std::numeric_limits<source_t>::is_signed;
bool target_signed = std::numeric_limits<target_t>::is_signed;
bool source_floating = !std::numeric_limits<source_t>::is_integer;
target_t correct_result;
if (saturating) {
if (source_floating) {
source_t bounded_lower = std::max(in(i), safe_cast<source_t>(target_min));
if (bounded_lower >= safe_cast<source_t>(target_max)) {
correct_result = target_max;
} else {
correct_result = (target_t)bounded_lower;
}
} else if (source_signed == target_signed) {
if (sizeof(source_t) > sizeof(target_t)) {
correct_result = (target_t)std::min(std::max(in(i),
safe_cast<source_t>(target_min)),
safe_cast<source_t>(target_max));
} else {
correct_result = (target_t)in(i);
}
} else {
if (source_signed) {
source_t val = std::max(in(i), (source_t)0);
if (sizeof(source_t) > sizeof(target_t)) {
correct_result = (target_t)std::min(val, safe_cast<source_t>(target_max));
} else {
correct_result = (target_t)val;
}
} else {
if (sizeof(source_t) >= sizeof(target_t)) {
correct_result = (target_t)std::min(in(i), safe_cast<source_t>(target_max));
} else { // dest is signed, but larger so unsigned source_t guaranteed to fit
correct_result = std::min((target_t)in(i), target_max);
}
}
}
// Do a simpler verification as well if a 64-bit int will hold everything
if ((sizeof(target_t) < 8 || target_signed) &&
(source_floating || (sizeof(source_t) < 8 || source_signed))) {
int64_t simpler_correct_result;
if (source_floating) {
double bounded_lower = std::max((double)in(i), (double)target_min);
if (bounded_lower >= (double)target_max) {
simpler_correct_result = target_max;
} else {
simpler_correct_result = (int64_t)bounded_lower;
}
} else {
simpler_correct_result = std::min(std::max((int64_t)in(i),
(int64_t)target_min),
(int64_t)target_max);
}
if (simpler_correct_result != (int64_t)correct_result) {
std::cout << "Simpler verification failed for index " << i
<< " correct_result is " << correct_result
<< " correct_result casted to int64_t is " << (int64_t)correct_result
<< " simpler_correct_result is " << simpler_correct_result << "\n"
<< "in(i) " << in(i)
<< " target_min " << target_min
<< " target_max " << target_max << "\n";
}
assert(simpler_correct_result == (int64_t)correct_result);
}
} else {
correct_result = (target_t)in(i);
}
if (result(i) != correct_result) {
std::cout << "Match failure at index " << i
<< " got " << result(i)
<< " expected " << correct_result
<< " for input " << in(i)
<< (saturating ? " saturating" : " nonsaturating") << "\n";
}
assert(result(i) == correct_result);
}
}
template<typename source_t>
void test_one_source_saturating() {
test_saturating<source_t, int8_t>();
test_saturating<source_t, uint8_t>();
test_saturating<source_t, int16_t>();
test_saturating<source_t, uint16_t>();
test_saturating<source_t, int32_t>();
test_saturating<source_t, uint32_t>();
test_saturating<source_t, int64_t>();
test_saturating<source_t, uint64_t>();
test_saturating<source_t, float>();
test_saturating<source_t, double>();
}
template<typename source_t>
void test_one_source_concise() {
test_concise<source_t, int8_t>(i8, false);
test_concise<source_t, uint8_t>(u8, false);
test_concise<source_t, int8_t>(i8_sat, true);
test_concise<source_t, uint8_t>(u8_sat, true);
test_concise<source_t, int16_t>(i16, false);
test_concise<source_t, uint16_t>(u16, false);
test_concise<source_t, int16_t>(i16_sat, true);
test_concise<source_t, uint16_t>(u16_sat, true);
test_concise<source_t, int32_t>(i32, false);
test_concise<source_t, uint32_t>(u32, false);
test_concise<source_t, int32_t>(i32_sat, true);
test_concise<source_t, uint32_t>(u32_sat, true);
test_concise<source_t, int64_t>(i64, false);
test_concise<source_t, uint64_t>(u64, false);
test_concise<source_t, int64_t>(i64_sat, true);
test_concise<source_t, uint64_t>(u64_sat, true);
}
template<typename source_t>
void test_one_source() {
test_one_source_saturating<source_t>();
test_one_source_concise<source_t>();
}
int main(int argc, char **argv) {
#if defined(__i386__) || defined(_M_IX86)
printf("[SKIP] Skipping test because it requires bit-exact int to float casts,\n"
"and on i386 without SSE it is hard to guarantee that the test binary won't use x87 instructions.\n");
return 0;
#endif
test_one_source<int8_t>();
test_one_source<uint8_t>();
test_one_source<int16_t>();
test_one_source<uint16_t>();
test_one_source<int32_t>();
test_one_source<uint32_t>();
test_one_source<int64_t>();
test_one_source<uint64_t>();
// Casting out of range values from floating-point
// to integer types is undefined behavior so only
// do the saturating casts.
test_one_source_saturating<float>();
test_one_source_saturating<double>();
printf("Success!\n");
return 0;
}
|