File: simd_op_check_arm.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (1156 lines) | stat: -rw-r--r-- 69,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
#include "simd_op_check.h"

#include "Halide.h"

#include <stdarg.h>
#include <stdio.h>
#include <string.h>

using namespace Halide;
using namespace Halide::ConciseCasts;

namespace {

using namespace std::string_literals;

class SimdOpCheckARM : public SimdOpCheckTest {
public:
    SimdOpCheckARM(Target t, int w = 768, int h = 128)
        : SimdOpCheckTest(t, w, h) {
    }

    void add_tests() override {
        if (target.arch == Target::ARM) {
            check_neon_all();
        }
    }

    void check_neon_all() {
        Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
        Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
        Expr f16_1 = in_f16(x), f16_2 = in_f16(x + 16), f16_3 = in_f16(x + 32);
        Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32), i8_4 = in_i8(x + 48);
        Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32), u8_4 = in_u8(x + 48);
        Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
        Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
        Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
        Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
        Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
        Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
        Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_2 < -0.3f), bool_3 = (f32_3 != -0.34f);

        // Table copied from the Cortex-A9 TRM.

        // In general neon ops have the 64-bit version, the 128-bit
        // version (ending in q), and the widening version that takes
        // 64-bit args and produces a 128-bit result (ending in l). We try
        // to peephole match any with vector, so we just try 64-bits, 128
        // bits, 192 bits, and 256 bits for everything.

        bool arm32 = (target.bits == 32);

        for (int w = 1; w <= 4; w++) {

            // VABA     I       -       Absolute Difference and Accumulate
            check(arm32 ? "vaba.s8" : "saba", 8 * w, i8_1 + absd(i8_2, i8_3));
            check(arm32 ? "vaba.u8" : "uaba", 8 * w, u8_1 + absd(u8_2, u8_3));
            check(arm32 ? "vaba.s16" : "saba", 4 * w, i16_1 + absd(i16_2, i16_3));
            check(arm32 ? "vaba.u16" : "uaba", 4 * w, u16_1 + absd(u16_2, u16_3));
            check(arm32 ? "vaba.s32" : "saba", 2 * w, i32_1 + absd(i32_2, i32_3));
            check(arm32 ? "vaba.u32" : "uaba", 2 * w, u32_1 + absd(u32_2, u32_3));

            // VABAL    I       -       Absolute Difference and Accumulate Long
            check(arm32 ? "vabal.s8" : "sabal", 8 * w, i16_1 + absd(i8_2, i8_3));
            check(arm32 ? "vabal.u8" : "uabal", 8 * w, u16_1 + absd(u8_2, u8_3));
            check(arm32 ? "vabal.s16" : "sabal", 4 * w, i32_1 + absd(i16_2, i16_3));
            check(arm32 ? "vabal.u16" : "uabal", 4 * w, u32_1 + absd(u16_2, u16_3));
            check(arm32 ? "vabal.s32" : "sabal", 2 * w, i64_1 + absd(i32_2, i32_3));
            check(arm32 ? "vabal.u32" : "uabal", 2 * w, u64_1 + absd(u32_2, u32_3));

            // VABD     I, F    -       Absolute Difference
            check(arm32 ? "vabd.s8" : "sabd", 8 * w, absd(i8_2, i8_3));
            check(arm32 ? "vabd.u8" : "uabd", 8 * w, absd(u8_2, u8_3));
            check(arm32 ? "vabd.s16" : "sabd", 4 * w, absd(i16_2, i16_3));
            check(arm32 ? "vabd.u16" : "uabd", 4 * w, absd(u16_2, u16_3));
            check(arm32 ? "vabd.s32" : "sabd", 2 * w, absd(i32_2, i32_3));
            check(arm32 ? "vabd.u32" : "uabd", 2 * w, absd(u32_2, u32_3));

            // Via widening, taking abs, then narrowing
            check(arm32 ? "vabd.s8" : "sabd", 8 * w, u8(abs(i16(i8_2) - i8_3)));
            check(arm32 ? "vabd.u8" : "uabd", 8 * w, u8(abs(i16(u8_2) - u8_3)));
            check(arm32 ? "vabd.s16" : "sabd", 4 * w, u16(abs(i32(i16_2) - i16_3)));
            check(arm32 ? "vabd.u16" : "uabd", 4 * w, u16(abs(i32(u16_2) - u16_3)));
            check(arm32 ? "vabd.s32" : "sabd", 2 * w, u32(abs(i64(i32_2) - i32_3)));
            check(arm32 ? "vabd.u32" : "uabd", 2 * w, u32(abs(i64(u32_2) - u32_3)));

            // VABDL    I       -       Absolute Difference Long
            check(arm32 ? "vabdl.s8" : "sabdl", 8 * w, i16(absd(i8_2, i8_3)));
            check(arm32 ? "vabdl.u8" : "uabdl", 8 * w, u16(absd(u8_2, u8_3)));
            check(arm32 ? "vabdl.s16" : "sabdl", 4 * w, i32(absd(i16_2, i16_3)));
            check(arm32 ? "vabdl.u16" : "uabdl", 4 * w, u32(absd(u16_2, u16_3)));
            check(arm32 ? "vabdl.s32" : "sabdl", 2 * w, i64(absd(i32_2, i32_3)));
            check(arm32 ? "vabdl.u32" : "uabdl", 2 * w, u64(absd(u32_2, u32_3)));

            // Via widening then taking an abs
            check(arm32 ? "vabdl.s8" : "sabdl", 8 * w, abs(i16(i8_2) - i16(i8_3)));
            check(arm32 ? "vabdl.u8" : "uabdl", 8 * w, abs(i16(u8_2) - i16(u8_3)));
            check(arm32 ? "vabdl.s16" : "sabdl", 4 * w, abs(i32(i16_2) - i32(i16_3)));
            check(arm32 ? "vabdl.u16" : "uabdl", 4 * w, abs(i32(u16_2) - i32(u16_3)));
            check(arm32 ? "vabdl.s32" : "sabdl", 2 * w, abs(i64(i32_2) - i64(i32_3)));
            check(arm32 ? "vabdl.u32" : "uabdl", 2 * w, abs(i64(u32_2) - i64(u32_3)));

            // VABS     I, F    F, D    Absolute
            check(arm32 ? "vabs.f32" : "fabs", 2 * w, abs(f32_1));
            check(arm32 ? "vabs.s32" : "abs", 2 * w, abs(i32_1));
            check(arm32 ? "vabs.s16" : "abs", 4 * w, abs(i16_1));
            check(arm32 ? "vabs.s8" : "abs", 8 * w, abs(i8_1));

            // VACGE    F       -       Absolute Compare Greater Than or Equal
            // VACGT    F       -       Absolute Compare Greater Than
            // VACLE    F       -       Absolute Compare Less Than or Equal
            // VACLT    F       -       Absolute Compare Less Than

            // VADD     I, F    F, D    Add
            check(arm32 ? "vadd.i8" : "add", 8 * w, i8_1 + i8_2);
            check(arm32 ? "vadd.i8" : "add", 8 * w, u8_1 + u8_2);
            check(arm32 ? "vadd.i16" : "add", 4 * w, i16_1 + i16_2);
            check(arm32 ? "vadd.i16" : "add", 4 * w, u16_1 + u16_2);
            check(arm32 ? "vadd.i32" : "add", 2 * w, i32_1 + i32_2);
            check(arm32 ? "vadd.i32" : "add", 2 * w, u32_1 + u32_2);
            check(arm32 ? "vadd.f32" : "fadd", 2 * w, f32_1 + f32_2);
            check(arm32 ? "vadd.i64" : "add", 2 * w, i64_1 + i64_2);
            check(arm32 ? "vadd.i64" : "add", 2 * w, u64_1 + u64_2);

            // VADDHN   I       -       Add and Narrow Returning High Half
            check(arm32 ? "vaddhn.i16" : "addhn", 8 * w, i8((i16_1 + i16_2) / 256));
            check(arm32 ? "vaddhn.i16" : "addhn", 8 * w, u8((u16_1 + u16_2) / 256));
            check(arm32 ? "vaddhn.i32" : "addhn", 4 * w, i16((i32_1 + i32_2) / 65536));
            check(arm32 ? "vaddhn.i32" : "addhn", 4 * w, u16((u32_1 + u32_2) / 65536));
            check(arm32 ? "vaddhn.i64" : "addhn", 4 * w, i32((i64_1 + i64_2) >> 32));
            check(arm32 ? "vaddhn.i64" : "addhn", 4 * w, u32((u64_1 + u64_2) >> 32));

            // VADDL    I       -       Add Long
            check(arm32 ? "vaddl.s8" : "saddl", 8 * w, i16(i8_1) + i16(i8_2));
            check(arm32 ? "vaddl.u8" : "uaddl", 8 * w, u16(u8_1) + u16(u8_2));
            check(arm32 ? "vaddl.s16" : "saddl", 4 * w, i32(i16_1) + i32(i16_2));
            check(arm32 ? "vaddl.u16" : "uaddl", 4 * w, u32(u16_1) + u32(u16_2));
            check(arm32 ? "vaddl.s32" : "saddl", 2 * w, i64(i32_1) + i64(i32_2));
            check(arm32 ? "vaddl.u32" : "uaddl", 2 * w, u64(u32_1) + u64(u32_2));

            // VADDW    I       -       Add Wide
            check(arm32 ? "vaddw.s8" : "saddw", 8 * w, i8_1 + i16_1);
            check(arm32 ? "vaddw.u8" : "uaddw", 8 * w, u8_1 + u16_1);
            check(arm32 ? "vaddw.s16" : "saddw", 4 * w, i16_1 + i32_1);
            check(arm32 ? "vaddw.u16" : "uaddw", 4 * w, u16_1 + u32_1);
            check(arm32 ? "vaddw.s32" : "saddw", 2 * w, i32_1 + i64_1);
            check(arm32 ? "vaddw.u32" : "uaddw", 2 * w, u32_1 + u64_1);

            // VAND     X       -       Bitwise AND
            // Not implemented in front-end yet
            // check("vand", 4, bool1 & bool2);
            // check("vand", 2, bool1 & bool2);

            // VBIC     I       -       Bitwise Clear
            // VBIF     X       -       Bitwise Insert if False
            // VBIT     X       -       Bitwise Insert if True
            // skip these ones

            // VBSL     X       -       Bitwise Select
            check(arm32 ? "vbsl" : "bsl", 2 * w, select(f32_1 > f32_2, 1.0f, 2.0f));

            // VCEQ     I, F    -       Compare Equal
            check(arm32 ? "vceq.i8" : "cmeq", 8 * w, select(i8_1 == i8_2, i8(1), i8(2)));
            check(arm32 ? "vceq.i8" : "cmeq", 8 * w, select(u8_1 == u8_2, u8(1), u8(2)));
            check(arm32 ? "vceq.i16" : "cmeq", 4 * w, select(i16_1 == i16_2, i16(1), i16(2)));
            check(arm32 ? "vceq.i16" : "cmeq", 4 * w, select(u16_1 == u16_2, u16(1), u16(2)));
            check(arm32 ? "vceq.i32" : "cmeq", 2 * w, select(i32_1 == i32_2, i32(1), i32(2)));
            check(arm32 ? "vceq.i32" : "cmeq", 2 * w, select(u32_1 == u32_2, u32(1), u32(2)));
            check(arm32 ? "vceq.f32" : "fcmeq", 2 * w, select(f32_1 == f32_2, 1.0f, 2.0f));

            // VCGE     I, F    -       Compare Greater Than or Equal
#if 0
            // Halide flips these to less than instead
            check("vcge.s8", 16, select(i8_1 >= i8_2, i8(1), i8(2)));
            check("vcge.u8", 16, select(u8_1 >= u8_2, u8(1), u8(2)));
            check("vcge.s16", 8, select(i16_1 >= i16_2, i16(1), i16(2)));
            check("vcge.u16", 8, select(u16_1 >= u16_2, u16(1), u16(2)));
            check("vcge.s32", 4, select(i32_1 >= i32_2, i32(1), i32(2)));
            check("vcge.u32", 4, select(u32_1 >= u32_2, u32(1), u32(2)));
            check("vcge.f32", 4, select(f32_1 >= f32_2, 1.0f, 2.0f));
            check("vcge.s8", 8, select(i8_1 >= i8_2, i8(1), i8(2)));
            check("vcge.u8", 8, select(u8_1 >= u8_2, u8(1), u8(2)));
            check("vcge.s16", 4, select(i16_1 >= i16_2, i16(1), i16(2)));
            check("vcge.u16", 4, select(u16_1 >= u16_2, u16(1), u16(2)));
            check("vcge.s32", 2, select(i32_1 >= i32_2, i32(1), i32(2)));
            check("vcge.u32", 2, select(u32_1 >= u32_2, u32(1), u32(2)));
            check("vcge.f32", 2, select(f32_1 >= f32_2, 1.0f, 2.0f));
#endif

            // VCGT     I, F    -       Compare Greater Than
            check(arm32 ? "vcgt.s8" : "cmgt", 8 * w, select(i8_1 > i8_2, i8(1), i8(2)));
            check(arm32 ? "vcgt.u8" : "cmhi", 8 * w, select(u8_1 > u8_2, u8(1), u8(2)));
            check(arm32 ? "vcgt.s16" : "cmgt", 4 * w, select(i16_1 > i16_2, i16(1), i16(2)));
            check(arm32 ? "vcgt.u16" : "cmhi", 4 * w, select(u16_1 > u16_2, u16(1), u16(2)));
            check(arm32 ? "vcgt.s32" : "cmgt", 2 * w, select(i32_1 > i32_2, i32(1), i32(2)));
            check(arm32 ? "vcgt.u32" : "cmhi", 2 * w, select(u32_1 > u32_2, u32(1), u32(2)));
            check(arm32 ? "vcgt.f32" : "fcmgt", 2 * w, select(f32_1 > f32_2, 1.0f, 2.0f));

            // VCLS     I       -       Count Leading Sign Bits
#if 0
            // We don't currently match these, but it wouldn't be hard to do.
            check(arm32 ? "vcls.s8" : "cls", 8 * w, max(count_leading_zeros(i8_1), count_leading_zeros(~i8_1)));
            check(arm32 ? "vcls.s16" : "cls", 8 * w, max(count_leading_zeros(i16_1), count_leading_zeros(~i16_1)));
            check(arm32 ? "vcls.s32" : "cls", 8 * w, max(count_leading_zeros(i32_1), count_leading_zeros(~i32_1)));
#endif

            // VCLZ     I       -       Count Leading Zeros
            check(arm32 ? "vclz.i8" : "clz", 8 * w, count_leading_zeros(i8_1));
            check(arm32 ? "vclz.i8" : "clz", 8 * w, count_leading_zeros(u8_1));
            check(arm32 ? "vclz.i16" : "clz", 8 * w, count_leading_zeros(i16_1));
            check(arm32 ? "vclz.i16" : "clz", 8 * w, count_leading_zeros(u16_1));
            check(arm32 ? "vclz.i32" : "clz", 8 * w, count_leading_zeros(i32_1));
            check(arm32 ? "vclz.i32" : "clz", 8 * w, count_leading_zeros(u32_1));

            // VCMP     -       F, D    Compare Setting Flags
            // We skip this

            // VCNT     I       -       Count Number of Set Bits
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(i8_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(u8_1));
            // There is only cnt for bytes, and then horizontal adds.
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(i16_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(u16_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(i32_1));
            check(arm32 ? "vcnt.8" : "cnt", 8 * w, popcount(u32_1));

            // VCVT     I, F, H I, F, D, H      Convert Between Floating-Point and 32-bit Integer Types
            check(arm32 ? "vcvt.f32.u32" : "ucvtf", 2 * w, f32(u32_1));
            check(arm32 ? "vcvt.f32.s32" : "scvtf", 2 * w, f32(i32_1));
            check(arm32 ? "vcvt.u32.f32" : "fcvtzu", 2 * w, u32(f32_1));
            check(arm32 ? "vcvt.s32.f32" : "fcvtzs", 2 * w, i32(f32_1));
            // skip the fixed point conversions for now

            if (!arm32) {
                check("fcvtmu *v", 2 * w, u32(floor(f32_1)));
                check("fcvtpu *v", 2 * w, u32(ceil(f32_1)));
                check("fcvtms *v", 2 * w, i32(floor(f32_1)));
                check("fcvtps *v", 2 * w, i32(ceil(f32_1)));
            }

            // VDIV     -       F, D    Divide
            // This doesn't actually get vectorized in 32-bit. Not sure cortex processors can do vectorized division.
            check(arm32 ? "vdiv.f32" : "fdiv", 2 * w, f32_1 / f32_2);
            check(arm32 ? "vdiv.f64" : "fdiv", 2 * w, f64_1 / f64_2);

            // VDUP     X       -       Duplicate
            check(arm32 ? "vdup.8" : "dup", 16 * w, i8(y));
            check(arm32 ? "vdup.8" : "dup", 16 * w, u8(y));
            check(arm32 ? "vdup.16" : "dup", 8 * w, i16(y));
            check(arm32 ? "vdup.16" : "dup", 8 * w, u16(y));
            check(arm32 ? "vdup.32" : "dup", 4 * w, i32(y));
            check(arm32 ? "vdup.32" : "dup", 4 * w, u32(y));
            check(arm32 ? "vdup.32" : "dup", 4 * w, f32(y));

            // VEOR     X       -       Bitwise Exclusive OR
            // check("veor", 4, bool1 ^ bool2);

            // VEXT     I       -       Extract Elements and Concatenate
            // unaligned loads with known offsets should use vext
#if 0
            // We currently don't do this.
            check("vext.8", 16, in_i8(x+1));
            check("vext.16", 8, in_i16(x+1));
            check("vext.32", 4, in_i32(x+1));
#endif

            // VHADD    I       -       Halving Add
            check(arm32 ? "vhadd.s8" : "shadd", 8 * w, i8((i16(i8_1) + i16(i8_2)) / 2));
            check(arm32 ? "vhadd.u8" : "uhadd", 8 * w, u8((u16(u8_1) + u16(u8_2)) / 2));
            check(arm32 ? "vhadd.s16" : "shadd", 4 * w, i16((i32(i16_1) + i32(i16_2)) / 2));
            check(arm32 ? "vhadd.u16" : "uhadd", 4 * w, u16((u32(u16_1) + u32(u16_2)) / 2));
            check(arm32 ? "vhadd.s32" : "shadd", 2 * w, i32((i64(i32_1) + i64(i32_2)) / 2));
            check(arm32 ? "vhadd.u32" : "uhadd", 2 * w, u32((u64(u32_1) + u64(u32_2)) / 2));

            // Halide doesn't define overflow behavior for i32 so we
            // can use vhadd instruction. We can't use it for unsigned u8,i16,u16,u32.
            check(arm32 ? "vhadd.s32" : "shadd", 2 * w, (i32_1 + i32_2) / 2);

            // VHSUB    I       -       Halving Subtract
            check(arm32 ? "vhsub.s8" : "shsub", 8 * w, i8((i16(i8_1) - i16(i8_2)) / 2));
            check(arm32 ? "vhsub.u8" : "uhsub", 8 * w, u8((u16(u8_1) - u16(u8_2)) / 2));
            check(arm32 ? "vhsub.s16" : "shsub", 4 * w, i16((i32(i16_1) - i32(i16_2)) / 2));
            check(arm32 ? "vhsub.u16" : "uhsub", 4 * w, u16((u32(u16_1) - u32(u16_2)) / 2));
            check(arm32 ? "vhsub.s32" : "shsub", 2 * w, i32((i64(i32_1) - i64(i32_2)) / 2));
            check(arm32 ? "vhsub.u32" : "uhsub", 2 * w, u32((u64(u32_1) - u64(u32_2)) / 2));

            check(arm32 ? "vhsub.s32" : "shsub", 2 * w, (i32_1 - i32_2) / 2);

            // VLD1     X       -       Load Single-Element Structures
            // dense loads with unknown alignments should use vld1 variants
            check(arm32 ? "vld1.8" : "ldr", 8 * w, in_i8(x + y));
            check(arm32 ? "vld1.8" : "ldr", 8 * w, in_u8(x + y));
            check(arm32 ? "vld1.16" : "ldr", 4 * w, in_i16(x + y));
            check(arm32 ? "vld1.16" : "ldr", 4 * w, in_u16(x + y));
            if (w > 1) {
                // When w == 1, llvm emits vldr instead
                check(arm32 ? "vld1.32" : "ldr", 2 * w, in_i32(x + y));
                check(arm32 ? "vld1.32" : "ldr", 2 * w, in_u32(x + y));
                check(arm32 ? "vld1.32" : "ldr", 2 * w, in_f32(x + y));
            }

            if (target.os != Target::IOS && target.os != Target::OSX) {
                // VLD* are not profitable on Apple silicon

                // Even on non-Apple silicon, LLVM occasionally decides it's
                // more profitable to use shuffles, so make sure we use both end
                // points in the loaded vector so that a vld{2,3,4} is safe and
                // useful.
                auto ld = [&](auto buf, int stride) {
                    return max(buf(x * stride), buf(x * stride + stride - 1));
                };

                // VLD2     X       -       Load Two-Element Structures
                check(arm32 ? "vld2.8" : "ld2", 32 * w, ld(in_i8, 2));
                check(arm32 ? "vld2.8" : "ld2", 32 * w, ld(in_u8, 2));
                check(arm32 ? "vld2.16" : "ld2", 16 * w, ld(in_i16, 2));
                check(arm32 ? "vld2.16" : "ld2", 16 * w, ld(in_u16, 2));
                check(arm32 ? "vld2.32" : "ld2", 8 * w, ld(in_i32, 2));
                check(arm32 ? "vld2.32" : "ld2", 8 * w, ld(in_u32, 2));
                check(arm32 ? "vld2.32" : "ld2", 8 * w, ld(in_f32, 2));

                // VLD3     X       -       Load Three-Element Structures
                check(arm32 ? "vld3.8" : "ld3", 32 * w, ld(in_i8, 3));
                check(arm32 ? "vld3.8" : "ld3", 32 * w, ld(in_u8, 3));
                check(arm32 ? "vld3.16" : "ld3", 16 * w, ld(in_i16, 3));
                check(arm32 ? "vld3.16" : "ld3", 16 * w, ld(in_u16, 3));
                check(arm32 ? "vld3.32" : "ld3", 8 * w, ld(in_i32, 3));
                check(arm32 ? "vld3.32" : "ld3", 8 * w, ld(in_u32, 3));
                check(arm32 ? "vld3.32" : "ld3", 8 * w, ld(in_f32, 3));

                // VLD4     X       -       Load Four-Element Structures
                check(arm32 ? "vld4.8" : "ld4", 32 * w, ld(in_i8, 4));
                check(arm32 ? "vld4.8" : "ld4", 32 * w, ld(in_u8, 4));
                check(arm32 ? "vld4.16" : "ld4", 16 * w, ld(in_i16, 4));
                check(arm32 ? "vld4.16" : "ld4", 16 * w, ld(in_u16, 4));
                check(arm32 ? "vld4.32" : "ld4", 8 * w, ld(in_i32, 4));
                check(arm32 ? "vld4.32" : "ld4", 8 * w, ld(in_u32, 4));
                check(arm32 ? "vld4.32" : "ld4", 8 * w, ld(in_f32, 4));
            } else if (!arm32) {
                // On Apple Silicon we expect dense loads followed by shuffles.
                check("uzp1.16b", 32 * w, in_i8(x * 2));
                check("uzp1.16b", 32 * w, in_u8(x * 2));
                check("uzp1.8h", 16 * w, in_i16(x * 2));
                check("uzp1.8h", 16 * w, in_u16(x * 2));
                check("uzp1.4s", 8 * w, in_i32(x * 2));
                check("uzp1.4s", 8 * w, in_u32(x * 2));
                check("uzp1.4s", 8 * w, in_f32(x * 2));

                // VLD3     X       -       Load Three-Element Structures
                check("tbl.16b", 32 * w, in_i8(x * 3));
                check("tbl.16b", 32 * w, in_u8(x * 3));
                check("tbl.16b", 16 * w, in_i16(x * 3));
                check("tbl.16b", 16 * w, in_u16(x * 3));
                // For 32-bit types llvm just scalarizes

                // VLD4     X       -       Load Four-Element Structures
                check("tbl.16b", 32 * w, in_i8(x * 4));
                check("tbl.16b", 32 * w, in_u8(x * 4));
                check("tbl.16b", 16 * w, in_i16(x * 4));
                check("tbl.16b", 16 * w, in_u16(x * 4));
            }

            // VLDM     X       F, D    Load Multiple Registers
            // VLDR     X       F, D    Load Single Register
            // We generally generate vld instead

            // VMAX     I, F    -       Maximum
            check(arm32 ? "vmax.s8" : "smax", 8 * w, max(i8_1, i8_2));
            check(arm32 ? "vmax.u8" : "umax", 8 * w, max(u8_1, u8_2));
            check(arm32 ? "vmax.s16" : "smax", 4 * w, max(i16_1, i16_2));
            check(arm32 ? "vmax.u16" : "umax", 4 * w, max(u16_1, u16_2));
            check(arm32 ? "vmax.s32" : "smax", 2 * w, max(i32_1, i32_2));
            check(arm32 ? "vmax.u32" : "umax", 2 * w, max(u32_1, u32_2));
            check(arm32 ? "vmax.f32" : "fmax", 2 * w, max(f32_1, f32_2));

            // VMIN     I, F    -       Minimum
            check(arm32 ? "vmin.s8" : "smin", 8 * w, min(i8_1, i8_2));
            check(arm32 ? "vmin.u8" : "umin", 8 * w, min(u8_1, u8_2));
            check(arm32 ? "vmin.s16" : "smin", 4 * w, min(i16_1, i16_2));
            check(arm32 ? "vmin.u16" : "umin", 4 * w, min(u16_1, u16_2));
            check(arm32 ? "vmin.s32" : "smin", 2 * w, min(i32_1, i32_2));
            check(arm32 ? "vmin.u32" : "umin", 2 * w, min(u32_1, u32_2));
            check(arm32 ? "vmin.f32" : "fmin", 2 * w, min(f32_1, f32_2));

            // VMLA     I, F    F, D    Multiply Accumulate
            check(arm32 ? "vmla.i8" : "mla", 8 * w, i8_1 + i8_2 * i8_3);
            check(arm32 ? "vmla.i8" : "mla", 8 * w, u8_1 + u8_2 * u8_3);
            check(arm32 ? "vmla.i16" : "mla", 4 * w, i16_1 + i16_2 * i16_3);
            check(arm32 ? "vmla.i16" : "mla", 4 * w, u16_1 + u16_2 * u16_3);
            check(arm32 ? "vmla.i32" : "mla", 2 * w, i32_1 + i32_2 * i32_3);
            check(arm32 ? "vmla.i32" : "mla", 2 * w, u32_1 + u32_2 * u32_3);
            if (w == 1 || w == 2) {
                // Older llvms don't always fuse this at non-native widths
                // TODO: Re-enable this after fixing https://github.com/halide/Halide/issues/3477
                // check(arm32 ? "vmla.f32" : "fmla", 2*w, f32_1 + f32_2*f32_3);
                if (!arm32)
                    check(arm32 ? "vmla.f32" : "fmla", 2 * w, f32_1 + f32_2 * f32_3);
            }

            // VMLS     I, F    F, D    Multiply Subtract
            check(arm32 ? "vmls.i8" : "mls", 8 * w, i8_1 - i8_2 * i8_3);
            check(arm32 ? "vmls.i8" : "mls", 8 * w, u8_1 - u8_2 * u8_3);
            check(arm32 ? "vmls.i16" : "mls", 4 * w, i16_1 - i16_2 * i16_3);
            check(arm32 ? "vmls.i16" : "mls", 4 * w, u16_1 - u16_2 * u16_3);
            check(arm32 ? "vmls.i32" : "mls", 2 * w, i32_1 - i32_2 * i32_3);
            check(arm32 ? "vmls.i32" : "mls", 2 * w, u32_1 - u32_2 * u32_3);
            if (w == 1 || w == 2) {
                // Older llvms don't always fuse this at non-native widths
                // TODO: Re-enable this after fixing https://github.com/halide/Halide/issues/3477
                // check(arm32 ? "vmls.f32" : "fmls", 2*w, f32_1 - f32_2*f32_3);
                if (!arm32)
                    check(arm32 ? "vmls.f32" : "fmls", 2 * w, f32_1 - f32_2 * f32_3);
            }

            // VMLAL    I       -       Multiply Accumulate Long
            check(arm32 ? "vmlal.s8" : "smlal", 8 * w, i16_1 + i16(i8_2) * i8_3);
            check(arm32 ? "vmlal.s8" : "smlal", 8 * w, i16_1 + i16(i8_2) * 2);
            check(arm32 ? "vmlal.u8" : "umlal", 8 * w, u16_1 + u16(u8_2) * u8_3);
            check(arm32 ? "vmlal.u8" : "umlal", 8 * w, u16_1 + u16(u8_2) * 2);
            check(arm32 ? "vmlal.s16" : "smlal", 4 * w, i32_1 + i32(i16_2) * i16_3);
            check(arm32 ? "vmlal.s16" : "smlal", 4 * w, i32_1 + i32(i16_2) * 2);
            check(arm32 ? "vmlal.u16" : "umlal", 4 * w, u32_1 + u32(u16_2) * u16_3);
            check(arm32 ? "vmlal.u16" : "umlal", 4 * w, u32_1 + u32(u16_2) * 2);
            check(arm32 ? "vmlal.s32" : "smlal", 2 * w, i64_1 + i64(i32_2) * i32_3);
            check(arm32 ? "vmlal.s32" : "smlal", 2 * w, i64_1 + i64(i32_2) * 2);
            check(arm32 ? "vmlal.u32" : "umlal", 2 * w, u64_1 + u64(u32_2) * u32_3);
            check(arm32 ? "vmlal.u32" : "umlal", 2 * w, u64_1 + u64(u32_2) * 2);

            // VMLSL    I       -       Multiply Subtract Long
            check(arm32 ? "vmlsl.s8" : "smlsl", 8 * w, i16_1 - i16(i8_2) * i8_3);
            check(arm32 ? "vmlsl.s8" : "smlsl", 8 * w, i16_1 - i16(i8_2) * 2);
            check(arm32 ? "vmlsl.u8" : "umlsl", 8 * w, u16_1 - u16(u8_2) * u8_3);
            check(arm32 ? "vmlsl.u8" : "umlsl", 8 * w, u16_1 - u16(u8_2) * 2);
            check(arm32 ? "vmlsl.s16" : "smlsl", 4 * w, i32_1 - i32(i16_2) * i16_3);
            check(arm32 ? "vmlsl.s16" : "smlsl", 4 * w, i32_1 - i32(i16_2) * 2);
            check(arm32 ? "vmlsl.u16" : "umlsl", 4 * w, u32_1 - u32(u16_2) * u16_3);
            check(arm32 ? "vmlsl.u16" : "umlsl", 4 * w, u32_1 - u32(u16_2) * 2);
            check(arm32 ? "vmlsl.s32" : "smlsl", 2 * w, i64_1 - i64(i32_2) * i32_3);
            check(arm32 ? "vmlsl.s32" : "smlsl", 2 * w, i64_1 - i64(i32_2) * 2);
            check(arm32 ? "vmlsl.u32" : "umlsl", 2 * w, u64_1 - u64(u32_2) * u32_3);
            check(arm32 ? "vmlsl.u32" : "umlsl", 2 * w, u64_1 - u64(u32_2) * 2);

            // VMOV     X       F, D    Move Register or Immediate
            // This is for loading immediates, which we won't do in the inner loop anyway

            // VMOVL    I       -       Move Long
            // For aarch64, llvm does a widening shift by 0 instead of using the sxtl instruction.
            check(arm32 ? "vmovl.s8" : "sshll", 8 * w, i16(i8_1));
            check(arm32 ? "vmovl.u8" : "ushll", 8 * w, u16(u8_1));
            check(arm32 ? "vmovl.u8" : "ushll", 8 * w, i16(u8_1));
            check(arm32 ? "vmovl.s16" : "sshll", 4 * w, i32(i16_1));
            check(arm32 ? "vmovl.u16" : "ushll", 4 * w, u32(u16_1));
            check(arm32 ? "vmovl.u16" : "ushll", 4 * w, i32(u16_1));
            check(arm32 ? "vmovl.s32" : "sshll", 2 * w, i64(i32_1));
            check(arm32 ? "vmovl.u32" : "ushll", 2 * w, u64(u32_1));
            check(arm32 ? "vmovl.u32" : "ushll", 2 * w, i64(u32_1));

            // VMOVN    I       -       Move and Narrow
            if (w > 1) {
                check(arm32 ? "vmovn.i16" : "uzp1", 8 * w, i8(i16_1));
                check(arm32 ? "vmovn.i16" : "uzp1", 8 * w, u8(u16_1));
                check(arm32 ? "vmovn.i32" : "uzp1", 4 * w, i16(i32_1));
                check(arm32 ? "vmovn.i32" : "uzp1", 4 * w, u16(u32_1));
                check(arm32 ? "vmovn.i64" : "uzp1", 2 * w, i32(i64_1));
                check(arm32 ? "vmovn.i64" : "uzp1", 2 * w, u32(u64_1));
            } else {
                check(arm32 ? "vmovn.i16" : "xtn", 8 * w, i8(i16_1));
                check(arm32 ? "vmovn.i16" : "xtn", 8 * w, u8(u16_1));
                check(arm32 ? "vmovn.i32" : "xtn", 4 * w, i16(i32_1));
                check(arm32 ? "vmovn.i32" : "xtn", 4 * w, u16(u32_1));
                check(arm32 ? "vmovn.i64" : "xtn", 2 * w, i32(i64_1));
                check(arm32 ? "vmovn.i64" : "xtn", 2 * w, u32(u64_1));
            }

            // VMRS     X       F, D    Move Advanced SIMD or VFP Register to ARM compute Engine
            // VMSR     X       F, D    Move ARM Core Register to Advanced SIMD or VFP
            // trust llvm to use this correctly

            // VMUL     I, F, P F, D    Multiply
            check(arm32 ? "vmul.f64" : "fmul", 2 * w, f64_2 * f64_1);
            check(arm32 ? "vmul.i8" : "mul", 8 * w, i8_2 * i8_1);
            check(arm32 ? "vmul.i8" : "mul", 8 * w, u8_2 * u8_1);
            check(arm32 ? "vmul.i16" : "mul", 4 * w, i16_2 * i16_1);
            check(arm32 ? "vmul.i16" : "mul", 4 * w, u16_2 * u16_1);
            check(arm32 ? "vmul.i32" : "mul", 2 * w, i32_2 * i32_1);
            check(arm32 ? "vmul.i32" : "mul", 2 * w, u32_2 * u32_1);
            check(arm32 ? "vmul.f32" : "fmul", 2 * w, f32_2 * f32_1);

            // VMULL    I, F, P -       Multiply Long
            check(arm32 ? "vmull.s8" : "smull", 8 * w, i16(i8_1) * i8_2);
            check(arm32 ? "vmull.u8" : "umull", 8 * w, u16(u8_1) * u8_2);
            check(arm32 ? "vmull.s16" : "smull", 4 * w, i32(i16_1) * i16_2);
            check(arm32 ? "vmull.u16" : "umull", 4 * w, u32(u16_1) * u16_2);
            check(arm32 ? "vmull.s32" : "smull", 2 * w, i64(i32_1) * i32_2);
            check(arm32 ? "vmull.u32" : "umull", 2 * w, u64(u32_1) * u32_2);

            // integer division by a constant should use fixed point unsigned
            // multiplication, which is done by using a widening multiply
            // followed by a narrowing
            check(arm32 ? "vmull.u8" : "umull", 8 * w, i8_1 / 37);
            check(arm32 ? "vmull.u8" : "umull", 8 * w, u8_1 / 37);
            check(arm32 ? "vmull.u16" : "umull", 4 * w, i16_1 / 37);
            check(arm32 ? "vmull.u16" : "umull", 4 * w, u16_1 / 37);
            check(arm32 ? "vmull.u32" : "umull", 2 * w, i32_1 / 37);
            check(arm32 ? "vmull.u32" : "umull", 2 * w, u32_1 / 37);

            // VMVN     X       -       Bitwise NOT
            // check("vmvn", ~bool1);

            // VNEG     I, F    F, D    Negate
            check(arm32 ? "vneg.s8" : "neg", 8 * w, -i8_1);
            check(arm32 ? "vneg.s16" : "neg", 4 * w, -i16_1);
            check(arm32 ? "vneg.s32" : "neg", 2 * w, -i32_1);
            check(arm32 ? "vneg.f32" : "fneg", 4 * w, -f32_1);
            check(arm32 ? "vneg.f64" : "fneg", 2 * w, -f64_1);

            // VNMLA    -       F, D    Negative Multiply Accumulate
            // VNMLS    -       F, D    Negative Multiply Subtract
            // VNMUL    -       F, D    Negative Multiply
#if 0
            // These are vfp, not neon. They only work on scalars
            check("vnmla.f32", 4, -(f32_1 + f32_2*f32_3));
            check("vnmla.f64", 2, -(f64_1 + f64_2*f64_3));
            check("vnmls.f32", 4, -(f32_1 - f32_2*f32_3));
            check("vnmls.f64", 2, -(f64_1 - f64_2*f64_3));
            check("vnmul.f32", 4, -(f32_1*f32_2));
            check("vnmul.f64", 2, -(f64_1*f64_2));
#endif

            // VORN     X       -       Bitwise OR NOT
            // check("vorn", bool1 | (~bool2));

            // VORR     X       -       Bitwise OR
            // check("vorr", bool1 | bool2);

            {
                for (int f : {2, 4}) {
                    RDom r(0, f);

                    // A summation reduction that starts at something
                    // non-trivial, to avoid llvm simplifying accumulating
                    // widening summations into just widening summations.
                    auto sum_ = [&](Expr e) {
                        Func f;
                        f(x) = cast(e.type(), 123);
                        f(x) += e;
                        return f(x);
                    };

                    // VPADD    I, F    -       Pairwise Add
                    check(arm32 ? "vpadd.i8" : "addp", 16, sum_(in_i8(f * x + r)));
                    check(arm32 ? "vpadd.i8" : "addp", 16, sum_(in_u8(f * x + r)));
                    check(arm32 ? "vpadd.i16" : "addp", 8, sum_(in_i16(f * x + r)));
                    check(arm32 ? "vpadd.i16" : "addp", 8, sum_(in_u16(f * x + r)));
                    check(arm32 ? "vpadd.i32" : "addp", 4, sum_(in_i32(f * x + r)));
                    check(arm32 ? "vpadd.i32" : "addp", 4, sum_(in_u32(f * x + r)));
                    check(arm32 ? "vpadd.f32" : "faddp", 4, sum_(in_f32(f * x + r)));
                    // In 32-bit, we don't have a pairwise op for doubles,
                    // and expect to just get vadd instructions on d
                    // registers.
                    check(arm32 ? "vadd.f64" : "faddp", 4, sum_(in_f64(f * x + r)));

                    if (f == 2) {
                        // VPADAL   I       -       Pairwise Add and Accumulate Long

                        // If we're reducing by a factor of two, we can
                        // use the forms with an accumulator
                        check(arm32 ? "vpadal.s8" : "sadalp", 16, sum_(i16(in_i8(f * x + r))));
                        check(arm32 ? "vpadal.u8" : "uadalp", 16, sum_(i16(in_u8(f * x + r))));
                        check(arm32 ? "vpadal.u8" : "uadalp", 16, sum_(u16(in_u8(f * x + r))));

                        check(arm32 ? "vpadal.s16" : "sadalp", 8, sum_(i32(in_i16(f * x + r))));
                        check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(i32(in_u16(f * x + r))));
                        check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(u32(in_u16(f * x + r))));

                        check(arm32 ? "vpadal.s32" : "sadalp", 4, sum_(i64(in_i32(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(i64(in_u32(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(u64(in_u32(f * x + r))));
                    } else {
                        // VPADDL   I       -       Pairwise Add Long

                        // If we're reducing by more than that, that's not
                        // possible.
                        check(arm32 ? "vpaddl.s8" : "saddlp", 16, sum_(i16(in_i8(f * x + r))));
                        check(arm32 ? "vpaddl.u8" : "uaddlp", 16, sum_(i16(in_u8(f * x + r))));
                        check(arm32 ? "vpaddl.u8" : "uaddlp", 16, sum_(u16(in_u8(f * x + r))));

                        check(arm32 ? "vpaddl.s16" : "saddlp", 8, sum_(i32(in_i16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 8, sum_(i32(in_u16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 8, sum_(u32(in_u16(f * x + r))));

                        check(arm32 ? "vpaddl.s32" : "saddlp", 4, sum_(i64(in_i32(f * x + r))));
                        check(arm32 ? "vpaddl.u32" : "uaddlp", 4, sum_(i64(in_u32(f * x + r))));
                        check(arm32 ? "vpaddl.u32" : "uaddlp", 4, sum_(u64(in_u32(f * x + r))));

                        // If we're widening the type by a factor of four
                        // as well as reducing by a factor of four, we
                        // expect vpaddl followed by vpadal
                        if (target.has_feature(Target::ARMDotProd)) {
                            check(arm32 ? "vpaddl.s8" : "sdot", 8, sum_(i32(in_i8(f * x + r))));
                            check(arm32 ? "vpaddl.u8" : "udot", 8, sum_(i32(in_u8(f * x + r))));
                            check(arm32 ? "vpaddl.u8" : "udot", 8, sum_(u32(in_u8(f * x + r))));
                            if (!arm32) {
                                check("udot", 8, u32(u8_1) * 200 + u32(u8_2) * 201 + u32(u8_3) * 202 + u32(u8_4) * 203);
                                // For signed, mapping the pattern above to sdot
                                // is a wash, because we can add more products
                                // of i8s together before they overflow an i16.
                            }
                        } else {
                            check(arm32 ? "vpaddl.s8" : "saddlp", 8, sum_(i32(in_i8(f * x + r))));
                            check(arm32 ? "vpaddl.u8" : "uaddlp", 8, sum_(i32(in_u8(f * x + r))));
                            check(arm32 ? "vpaddl.u8" : "uaddlp", 8, sum_(u32(in_u8(f * x + r))));
                        }
                        check(arm32 ? "vpaddl.s16" : "saddlp", 4, sum_(i64(in_i16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 4, sum_(i64(in_u16(f * x + r))));
                        check(arm32 ? "vpaddl.u16" : "uaddlp", 4, sum_(u64(in_u16(f * x + r))));

                        // Note that when going from u8 to i32 like this,
                        // the vpaddl is unsigned and the vpadal is a
                        // signed, because the intermediate type is u16
                        if (target.has_feature(Target::ARMDotProd)) {
                            check(arm32 ? "vpadal.s16" : "sdot", 8, sum_(i32(in_i8(f * x + r))));
                            check(arm32 ? "vpadal.s16" : "udot", 8, sum_(i32(in_u8(f * x + r))));
                            check(arm32 ? "vpadal.u16" : "udot", 8, sum_(u32(in_u8(f * x + r))));
                        } else {
                            check(arm32 ? "vpadal.s16" : "sadalp", 8, sum_(i32(in_i8(f * x + r))));
                            check(arm32 ? "vpadal.s16" : "sadalp", 8, sum_(i32(in_u8(f * x + r))));
                            check(arm32 ? "vpadal.u16" : "uadalp", 8, sum_(u32(in_u8(f * x + r))));
                        }
                        check(arm32 ? "vpadal.s32" : "sadalp", 4, sum_(i64(in_i16(f * x + r))));
                        check(arm32 ? "vpadal.s32" : "sadalp", 4, sum_(i64(in_u16(f * x + r))));
                        check(arm32 ? "vpadal.u32" : "uadalp", 4, sum_(u64(in_u16(f * x + r))));
                    }

                    // VPMAX    I, F    -       Pairwise Maximum
                    check(arm32 ? "vpmax.s8" : "smaxp", 16, maximum(in_i8(f * x + r)));
                    check(arm32 ? "vpmax.u8" : "umaxp", 16, maximum(in_u8(f * x + r)));
                    check(arm32 ? "vpmax.s16" : "smaxp", 8, maximum(in_i16(f * x + r)));
                    check(arm32 ? "vpmax.u16" : "umaxp", 8, maximum(in_u16(f * x + r)));
                    check(arm32 ? "vpmax.s32" : "smaxp", 4, maximum(in_i32(f * x + r)));
                    check(arm32 ? "vpmax.u32" : "umaxp", 4, maximum(in_u32(f * x + r)));

                    // VPMIN    I, F    -       Pairwise Minimum
                    check(arm32 ? "vpmin.s8" : "sminp", 16, minimum(in_i8(f * x + r)));
                    check(arm32 ? "vpmin.u8" : "uminp", 16, minimum(in_u8(f * x + r)));
                    check(arm32 ? "vpmin.s16" : "sminp", 8, minimum(in_i16(f * x + r)));
                    check(arm32 ? "vpmin.u16" : "uminp", 8, minimum(in_u16(f * x + r)));
                    check(arm32 ? "vpmin.s32" : "sminp", 4, minimum(in_i32(f * x + r)));
                    check(arm32 ? "vpmin.u32" : "uminp", 4, minimum(in_u32(f * x + r)));
                }

                // UDOT/SDOT
                if (target.has_feature(Target::ARMDotProd)) {
                    for (int f : {4, 8}) {
                        RDom r(0, f);
                        for (int v : {2, 4}) {
                            check("udot", v, sum(u32(in_u8(f * x + r)) * in_u8(f * x + r + 32)));
                            check("sdot", v, sum(i32(in_i8(f * x + r)) * in_i8(f * x + r + 32)));
                            if (f == 4) {
                                // This doesn't generate for higher reduction factors because the
                                // intermediate is 16-bit instead of 32-bit. It seems like it would
                                // be slower to fix this (because the intermediate sum would be
                                // 32-bit instead of 16-bit).
                                check("udot", v, sum(u32(in_u8(f * x + r))));
                                check("sdot", v, sum(i32(in_i8(f * x + r))));
                            }
                        }
                    }
                }
            }
            // VPOP     X       F, D    Pop from Stack
            // VPUSH    X       F, D    Push to Stack
            // Not used by us

            // VQABS    I       -       Saturating Absolute
#if 0
            // Of questionable value. Catching abs calls is annoying, and the
            // slow path is only one more op (for the max).
            check("vqabs.s8", 16, abs(max(i8_1, -max_i8)));
            check("vqabs.s8", 8, abs(max(i8_1, -max_i8)));
            check("vqabs.s16", 8, abs(max(i16_1, -max_i16)));
            check("vqabs.s16", 4, abs(max(i16_1, -max_i16)));
            check("vqabs.s32", 4, abs(max(i32_1, -max_i32)));
            check("vqabs.s32", 2, abs(max(i32_1, -max_i32)));
#endif

            // VQADD    I       -       Saturating Add
            check(arm32 ? "vqadd.s8" : "sqadd", 8 * w, i8_sat(i16(i8_1) + i16(i8_2)));
            check(arm32 ? "vqadd.s16" : "sqadd", 4 * w, i16_sat(i32(i16_1) + i32(i16_2)));
            check(arm32 ? "vqadd.s32" : "sqadd", 2 * w, i32_sat(i64(i32_1) + i64(i32_2)));

            check(arm32 ? "vqadd.u8" : "uqadd", 8 * w, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
            check(arm32 ? "vqadd.u16" : "uqadd", 4 * w, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
            check(arm32 ? "vqadd.u32" : "uqadd", 2 * w, u32(min(u64(u32_1) + u64(u32_2), max_u32)));

            // Check the case where we add a constant that could be narrowed
            check(arm32 ? "vqadd.u8" : "uqadd", 8 * w, u8(min(u16(u8_1) + 17, max_u8)));
            check(arm32 ? "vqadd.u16" : "uqadd", 4 * w, u16(min(u32(u16_1) + 17, max_u16)));
            check(arm32 ? "vqadd.u32" : "uqadd", 2 * w, u32(min(u64(u32_1) + 17, max_u32)));

            // Can't do larger ones because we can't represent the intermediate 128-bit wide ops.

            // VQDMLAL  I       -       Saturating Double Multiply Accumulate Long
            // VQDMLSL  I       -       Saturating Double Multiply Subtract Long
            // We don't do these, but it would be possible.

            // VQDMULH  I       -       Saturating Doubling Multiply Returning High Half
            // VQDMULL  I       -       Saturating Doubling Multiply Long
            check(arm32 ? "vqdmulh.s16" : "sqdmulh", 4 * w, i16_sat((i32(i16_1) * i32(i16_2)) >> 15));
            check(arm32 ? "vqdmulh.s32" : "sqdmulh", 2 * w, i32_sat((i64(i32_1) * i64(i32_2)) >> 31));

            // VQMOVN   I       -       Saturating Move and Narrow
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(i16_1));
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(i32_1));
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(i64_1));
            check(arm32 ? "vqmovn.s32" : "sqxtn", 4 * w, i16_sat(i32_1));
            check(arm32 ? "vqmovn.s32" : "sqxtn", 4 * w, i16_sat(i64_1));
            check(arm32 ? "vqmovn.s64" : "sqxtn", 2 * w, i32_sat(i64_1));
            check(arm32 ? "vqmovn.u16" : "uqxtn", 8 * w, u8(min(u16_1, max_u8)));
            check(arm32 ? "vqmovn.u16" : "uqxtn", 8 * w, u8(min(u32_1, max_u8)));
            check(arm32 ? "vqmovn.u16" : "uqxtn", 8 * w, u8(min(u64_1, max_u8)));
            check(arm32 ? "vqmovn.u32" : "uqxtn", 4 * w, u16(min(u32_1, max_u16)));
            check(arm32 ? "vqmovn.u32" : "uqxtn", 4 * w, u16(min(u64_1, max_u16)));
            check(arm32 ? "vqmovn.u64" : "uqxtn", 2 * w, u32(min(u64_1, max_u32)));
            // Double/Triple saturating narrow from float
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(f32_1));
            check(arm32 ? "vqmovn.s16" : "sqxtn", 8 * w, i8_sat(f64_1));
            check(arm32 ? "vqmovn.s32" : "sqxtn", 4 * w, i16_sat(f64_1));

            // VQMOVUN  I       -       Saturating Move and Unsigned Narrow
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(i16_1));
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(i32_1));
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(i64_1));
            check(arm32 ? "vqmovun.s32" : "sqxtun", 4 * w, u16_sat(i32_1));
            check(arm32 ? "vqmovun.s32" : "sqxtun", 4 * w, u16_sat(i64_1));
            check(arm32 ? "vqmovun.s64" : "sqxtun", 2 * w, u32_sat(i64_1));
            // Double/Triple saturating narrow from float
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(f32_1));
            check(arm32 ? "vqmovun.s16" : "sqxtun", 8 * w, u8_sat(f64_1));
            check(arm32 ? "vqmovun.s32" : "sqxtun", 4 * w, u16_sat(f64_1));

            // VQNEG    I       -       Saturating Negate
            check(arm32 ? "vqneg.s8" : "sqneg", 8 * w, -max(i8_1, -max_i8));
            check(arm32 ? "vqneg.s16" : "sqneg", 4 * w, -max(i16_1, -max_i16));
            check(arm32 ? "vqneg.s32" : "sqneg", 2 * w, -max(i32_1, -max_i32));

            // VQRDMULH I       -       Saturating Rounding Doubling Multiply Returning High Half
            // Note: division in Halide always rounds down (not towards
            // zero). Otherwise these patterns would be more complicated.
            check(arm32 ? "vqrdmulh.s16" : "sqrdmulh", 4 * w, i16_sat((i32(i16_1) * i32(i16_2) + (1 << 14)) / (1 << 15)));
            check(arm32 ? "vqrdmulh.s32" : "sqrdmulh", 2 * w, i32_sat((i64(i32_1) * i64(i32_2) + (1 << 30)) / (Expr(int64_t(1)) << 31)));

            // VQRSHRN   I       -       Saturating Rounding Shift Right Narrow
            // VQRSHRUN  I       -       Saturating Rounding Shift Right Unsigned Narrow
            check(arm32 ? "vqrshrn.s16" : "sqrshrn", 8 * w, i8_sat((i32(i16_1) + 8) / 16));
            check(arm32 ? "vqrshrn.s32" : "sqrshrn", 4 * w, i16_sat((i32_1 + 8) / 16));
            check(arm32 ? "vqrshrn.s64" : "sqrshrn", 2 * w, i32_sat((i64_1 + 8) / 16));
            check(arm32 ? "vqrshrun.s16" : "sqrshrun", 8 * w, u8_sat((i32(i16_1) + 8) / 16));
            check(arm32 ? "vqrshrun.s32" : "sqrshrun", 4 * w, u16_sat((i32_1 + 8) / 16));
            check(arm32 ? "vqrshrun.s64" : "sqrshrun", 2 * w, u32_sat((i64_1 + 8) / 16));
            check(arm32 ? "vqrshrn.u16" : "uqrshrn", 8 * w, u8(min((u32(u16_1) + 8) / 16, max_u8)));
            check(arm32 ? "vqrshrn.u32" : "uqrshrn", 4 * w, u16(min((u64(u32_1) + 8) / 16, max_u16)));
            // check(arm32 ? "vqrshrn.u64" : "uqrshrn", 2 * w, u32(min((u64_1 + 8) / 16, max_u32)));

            // VQSHL    I       -       Saturating Shift Left
            check(arm32 ? "vqshl.s8" : "sqshl", 8 * w, i8_sat(i16(i8_1) * 16));
            check(arm32 ? "vqshl.s16" : "sqshl", 4 * w, i16_sat(i32(i16_1) * 16));
            check(arm32 ? "vqshl.s32" : "sqshl", 2 * w, i32_sat(i64(i32_1) * 16));
            check(arm32 ? "vqshl.u8" : "uqshl", 8 * w, u8(min(u16(u8_1) * 16, max_u8)));
            check(arm32 ? "vqshl.u16" : "uqshl", 4 * w, u16(min(u32(u16_1) * 16, max_u16)));
            check(arm32 ? "vqshl.u32" : "uqshl", 2 * w, u32(min(u64(u32_1) * 16, max_u32)));

            // VQSHLU   I       -       Saturating Shift Left Unsigned
            check(arm32 ? "vqshlu.s8" : "sqshlu", 8 * w, u8_sat(i16(i8_1) * 16));
            check(arm32 ? "vqshlu.s16" : "sqshlu", 4 * w, u16_sat(i32(i16_1) * 16));
            check(arm32 ? "vqshlu.s32" : "sqshlu", 2 * w, u32_sat(i64(i32_1) * 16));

            // VQSHRN   I       -       Saturating Shift Right Narrow
            // VQSHRUN  I       -       Saturating Shift Right Unsigned Narrow
            check(arm32 ? "vqshrn.s16" : "sqshrn", 8 * w, i8_sat(i16_1 / 16));
            check(arm32 ? "vqshrn.s32" : "sqshrn", 4 * w, i16_sat(i32_1 / 16));
            check(arm32 ? "vqshrn.s64" : "sqshrn", 2 * w, i32_sat(i64_1 / 16));
            check(arm32 ? "vqshrun.s16" : "sqshrun", 8 * w, u8_sat(i16_1 / 16));
            check(arm32 ? "vqshrun.s32" : "sqshrun", 4 * w, u16_sat(i32_1 / 16));
            check(arm32 ? "vqshrun.s64" : "sqshrun", 2 * w, u32_sat(i64_1 / 16));
            check(arm32 ? "vqshrn.u16" : "uqshrn", 8 * w, u8(min(u16_1 / 16, max_u8)));
            check(arm32 ? "vqshrn.u32" : "uqshrn", 4 * w, u16(min(u32_1 / 16, max_u16)));
            check(arm32 ? "vqshrn.u64" : "uqshrn", 2 * w, u32(min(u64_1 / 16, max_u32)));

            // VQSUB    I       -       Saturating Subtract
            check(arm32 ? "vqsub.s8" : "sqsub", 8 * w, i8_sat(i16(i8_1) - i16(i8_2)));
            check(arm32 ? "vqsub.s16" : "sqsub", 4 * w, i16_sat(i32(i16_1) - i32(i16_2)));
            check(arm32 ? "vqsub.s32" : "sqsub", 2 * w, i32_sat(i64(i32_1) - i64(i32_2)));

            // N.B. Saturating subtracts are expressed by widening to a igned* type
            check(arm32 ? "vqsub.u8" : "uqsub", 8 * w, u8_sat(i16(u8_1) - i16(u8_2)));
            check(arm32 ? "vqsub.u16" : "uqsub", 4 * w, u16_sat(i32(u16_1) - i32(u16_2)));
            check(arm32 ? "vqsub.u32" : "uqsub", 2 * w, u32_sat(i64(u32_1) - i64(u32_2)));

            // VRADDHN  I       -       Rounding Add and Narrow Returning High Half
            check(arm32 ? "vraddhn.i16" : "raddhn", 8 * w, i8((i32(i16_1 + i16_2) + 128) >> 8));
            check(arm32 ? "vraddhn.i16" : "raddhn", 8 * w, u8((u32(u16_1 + u16_2) + 128) >> 8));
            check(arm32 ? "vraddhn.i32" : "raddhn", 4 * w, i16((i32_1 + i32_2 + 32768) >> 16));
            check(arm32 ? "vraddhn.i32" : "raddhn", 4 * w, u16((u64(u32_1 + u32_2) + 32768) >> 16));
            check(arm32 ? "vraddhn.i64" : "raddhn", 2 * w, i32((i64_1 + i64_2 + (Expr(int64_t(1)) << 31)) >> 32));
            // check(arm32 ? "vraddhn.i64" : "raddhn", 2 * w, u32((u128(u64_1) + u64_2 + (Expr(uint64_t(1)) << 31)) >> 32));

            // VRECPE   I, F    -       Reciprocal Estimate
            check(arm32 ? "vrecpe.f32" : "frecpe", 2 * w, fast_inverse(f32_1));

            // VRECPS   F       -       Reciprocal Step
            check(arm32 ? "vrecps.f32" : "frecps", 2 * w, fast_inverse(f32_1));

            // VREV16   X       -       Reverse in Halfwords
            // VREV32   X       -       Reverse in Words
            // VREV64   X       -       Reverse in Doublewords

            // These reverse within each halfword, word, and doubleword
            // respectively. Sometimes llvm generates them, and sometimes
            // it generates vtbl instructions.

            // VRHADD   I       -       Rounding Halving Add
            check(arm32 ? "vrhadd.s8" : "srhadd", 8 * w, i8((i16(i8_1) + i16(i8_2) + 1) / 2));
            check(arm32 ? "vrhadd.u8" : "urhadd", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
            check(arm32 ? "vrhadd.s16" : "srhadd", 4 * w, i16((i32(i16_1) + i32(i16_2) + 1) / 2));
            check(arm32 ? "vrhadd.u16" : "urhadd", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
            check(arm32 ? "vrhadd.s32" : "srhadd", 2 * w, i32((i64(i32_1) + i64(i32_2) + 1) / 2));
            check(arm32 ? "vrhadd.u32" : "urhadd", 2 * w, u32((u64(u32_1) + u64(u32_2) + 1) / 2));

            // VRSHL    I       -       Rounding Shift Left
            Expr shift_8 = (i8_2 % 8) - 4;
            Expr shift_16 = (i16_2 % 16) - 8;
            Expr shift_32 = (i32_2 % 32) - 16;
            Expr shift_64 = (i64_2 % 64) - 32;
            Expr round_s8 = (i8(1) >> min(shift_8, 0)) / 2;
            Expr round_s16 = (i16(1) >> min(shift_16, 0)) / 2;
            Expr round_s32 = (i32(1) >> min(shift_32, 0)) / 2;
            Expr round_u8 = (u8(1) >> min(shift_8, 0)) / 2;
            Expr round_u16 = (u16(1) >> min(shift_16, 0)) / 2;
            Expr round_u32 = (u32(1) >> min(shift_32, 0)) / 2;
            check(arm32 ? "vrshl.s8" : "srshl", 16 * w, i8((i16(i8_1) + round_s8) << shift_8));
            check(arm32 ? "vrshl.s16" : "srshl", 8 * w, i16((i32(i16_1) + round_s16) << shift_16));
            check(arm32 ? "vrshl.s32" : "srshl", 4 * w, i32((i32_1 + round_s32) << shift_32));
            check(arm32 ? "vrshl.u8" : "urshl", 16 * w, u8((u16(u8_1) + round_u8) << shift_8));
            check(arm32 ? "vrshl.u16" : "urshl", 8 * w, u16((u32(u16_1) + round_u16) << shift_16));
            check(arm32 ? "vrshl.u32" : "urshl", 4 * w, u32((u64(u32_1) + round_u32) << shift_32));

            round_s8 = (i8(1) << max(shift_8, 0)) / 2;
            round_s16 = (i16(1) << max(shift_16, 0)) / 2;
            round_s32 = (i32(1) << max(shift_32, 0)) / 2;
            round_u8 = (u8(1) << max(shift_8, 0)) / 2;
            round_u16 = (u16(1) << max(shift_16, 0)) / 2;
            round_u32 = (u32(1) << max(shift_32, 0)) / 2;
            check(arm32 ? "vrshl.s8" : "srshl", 16 * w, i8((i16(i8_1) + round_s8) >> shift_8));
            check(arm32 ? "vrshl.s16" : "srshl", 8 * w, i16((i32(i16_1) + round_s16) >> shift_16));
            check(arm32 ? "vrshl.s32" : "srshl", 4 * w, i32((i32_1 + round_s32) >> shift_32));
            check(arm32 ? "vrshl.u8" : "urshl", 16 * w, u8((u16(u8_1) + round_u8) >> shift_8));
            check(arm32 ? "vrshl.u16" : "urshl", 8 * w, u16((u32(u16_1) + round_u16) >> shift_16));
            check(arm32 ? "vrshl.u32" : "urshl", 4 * w, u32((u64(u32_1) + round_u32) >> shift_32));

            // VRSHR    I       -       Rounding Shift Right
            check(arm32 ? "vrshr.s8" : "srshr", 16 * w, i8((i16(i8_1) + 1) >> 1));
            check(arm32 ? "vrshr.s16" : "srshr", 8 * w, i16((i32(i16_1) + 2) >> 2));
            check(arm32 ? "vrshr.s32" : "srshr", 4 * w, i32((i32_1 + 4) >> 3));
            check(arm32 ? "vrshr.u8" : "urshr", 16 * w, u8((u16(u8_1) + 8) >> 4));
            check(arm32 ? "vrshr.u16" : "urshr", 8 * w, u16((u32(u16_1) + 16) >> 5));
            check(arm32 ? "vrshr.u32" : "urshr", 4 * w, u32((u64(u32_1) + 32) >> 6));

            // VRSHRN   I       -       Rounding Shift Right Narrow
            // LLVM14 converts RSHRN/RSHRN2 to RADDHN/RADDHN2 when the shift amount is half the width of the vector element
            // See https://reviews.llvm.org/D116166
            check(arm32 ? "vrshrn.i16" : "raddhn", 8 * w, i8((i32(i16_1) + 128) >> 8));
            check(arm32 ? "vrshrn.i32" : "rshrn", 4 * w, i16((i32_1 + 256) >> 9));
            check(arm32 ? "vrshrn.i64" : "rshrn", 2 * w, i32((i64_1 + 8) >> 4));
            check(arm32 ? "vrshrn.i16" : "raddhn", 8 * w, u8((u32(u16_1) + 128) >> 8));
            check(arm32 ? "vrshrn.i32" : "rshrn", 4 * w, u16((u64(u32_1) + 1024) >> 11));
            // check(arm32 ? "vrshrn.i64" : "raddhn", 2 * w, u32((u64_1 + 64) >> 7));

            // VRSQRTE  I, F    -       Reciprocal Square Root Estimate
            check(arm32 ? "vrsqrte.f32" : "frsqrte", 4 * w, fast_inverse_sqrt(f32_1));

            // VRSQRTS  F       -       Reciprocal Square Root Step
            check(arm32 ? "vrsqrts.f32" : "frsqrts", 4 * w, fast_inverse_sqrt(f32_1));

            // VFRINTN
            if (target.bits == 64) {
                // LLVM doesn't want to emit vfrintn on arm-32
                check(arm32 ? "vfrintn.f16" : "frintn", 8 * w, round(f16_1));
                check(arm32 ? "vfrintn.f32" : "frintn", 4 * w, round(f32_1));
                check(arm32 ? "vfrintn.f64" : "frintn", 2 * w, round(f64_1));
            }

            // VRSRA    I       -       Rounding Shift Right and Accumulate
            check(arm32 ? "vrsra.s8" : "srsra", 16 * w, i8_2 + i8((i16(i8_1) + 4) >> 3));
            check(arm32 ? "vrsra.s16" : "srsra", 8 * w, i16_2 + i16((i32(i16_1) + 8) >> 4));
            check(arm32 ? "vrsra.s32" : "srsra", 4 * w, i32_2 + ((i32_1 + 16) >> 5));
            check(arm32 ? "vrsra.u8" : "ursra", 16 * w, u8_2 + u8((u16(u8_1) + 32) >> 6));
            check(arm32 ? "vrsra.u16" : "ursra", 8 * w, u16_2 + u16((u32(u16_1) + 64) >> 7));
            check(arm32 ? "vrsra.u32" : "ursra", 4 * w, u32_2 + u32((u64(u32_1) + 128) >> 8));

            // VRSUBHN  I       -       Rounding Subtract and Narrow Returning High Half
            check(arm32 ? "vrsubhn.i16" : "rsubhn", 8 * w, i8((i32(i16_1 - i16_2) + 128) >> 8));
            check(arm32 ? "vrsubhn.i16" : "rsubhn", 8 * w, u8((u32(u16_1 - u16_2) + 128) >> 8));
            check(arm32 ? "vrsubhn.i32" : "rsubhn", 4 * w, i16((i32_1 - i32_2 + 32768) >> 16));
            check(arm32 ? "vrsubhn.i32" : "rsubhn", 4 * w, u16((u64(u32_1 - u32_2) + 32768) >> 16));
            check(arm32 ? "vrsubhn.i64" : "rsubhn", 2 * w, i32((i64_1 - i64_2 + (Expr(int64_t(1)) << 31)) >> 32));
            // check(arm32 ? "vrsubhn.i64" : "rsubhn", 2 * w, u32((u64_1 - u64_2 + (Expr(uint64_t(1)) << 31)) >> 32));

            // VSHL     I       -       Shift Left
            check(arm32 ? "vshl.i8" : "shl", 8 * w, i8_1 * 16);
            check(arm32 ? "vshl.i16" : "shl", 4 * w, i16_1 * 16);
            check(arm32 ? "vshl.i32" : "shl", 2 * w, i32_1 * 16);
            check(arm32 ? "vshl.i64" : "shl", 2 * w, i64_1 * 16);
            check(arm32 ? "vshl.i8" : "shl", 8 * w, u8_1 * 16);
            check(arm32 ? "vshl.i16" : "shl", 4 * w, u16_1 * 16);
            check(arm32 ? "vshl.i32" : "shl", 2 * w, u32_1 * 16);
            check(arm32 ? "vshl.i64" : "shl", 2 * w, u64_1 * 16);
            check(arm32 ? "vshl.s8" : "sshl", 8 * w, i8_1 << shift_8);
            check(arm32 ? "vshl.s8" : "sshl", 8 * w, i8_1 >> shift_8);
            check(arm32 ? "vshl.s16" : "sshl", 4 * w, i16_1 << shift_16);
            check(arm32 ? "vshl.s16" : "sshl", 4 * w, i16_1 >> shift_16);
            check(arm32 ? "vshl.s32" : "sshl", 2 * w, i32_1 << shift_32);
            check(arm32 ? "vshl.s32" : "sshl", 2 * w, i32_1 >> shift_32);
            check(arm32 ? "vshl.s64" : "sshl", 2 * w, i64_1 << shift_64);
            check(arm32 ? "vshl.s64" : "sshl", 2 * w, i64_1 >> shift_64);
            check(arm32 ? "vshl.u8" : "ushl", 8 * w, u8_1 << shift_8);
            check(arm32 ? "vshl.u8" : "ushl", 8 * w, u8_1 >> shift_8);
            check(arm32 ? "vshl.u16" : "ushl", 4 * w, u16_1 << shift_16);
            check(arm32 ? "vshl.u16" : "ushl", 4 * w, u16_1 >> shift_16);
            check(arm32 ? "vshl.u32" : "ushl", 2 * w, u32_1 << shift_32);
            check(arm32 ? "vshl.u32" : "ushl", 2 * w, u32_1 >> shift_32);
            check(arm32 ? "vshl.u64" : "ushl", 2 * w, u64_1 << shift_64);
            check(arm32 ? "vshl.u64" : "ushl", 2 * w, u64_1 >> shift_64);

            // VSHLL    I       -       Shift Left Long
            check(arm32 ? "vshll.s8" : "sshll", 8 * w, i16(i8_1) * 16);
            check(arm32 ? "vshll.s16" : "sshll", 4 * w, i32(i16_1) * 16);
            check(arm32 ? "vshll.s32" : "sshll", 2 * w, i64(i32_1) * 16);
            check(arm32 ? "vshll.u8" : "ushll", 8 * w, u16(u8_1) * 16);
            check(arm32 ? "vshll.u16" : "ushll", 4 * w, u32(u16_1) * 16);
            check(arm32 ? "vshll.u32" : "ushll", 2 * w, u64(u32_1) * 16);

            // VSHR     I       -       Shift Right
            check(arm32 ? "vshr.s8" : "sshr", 8 * w, i8_1 / 16);
            check(arm32 ? "vshr.s16" : "sshr", 4 * w, i16_1 / 16);
            check(arm32 ? "vshr.s32" : "sshr", 2 * w, i32_1 / 16);
            check(arm32 ? "vshr.s64" : "sshr", 2 * w, i64_1 / 16);
            check(arm32 ? "vshr.u8" : "ushr", 8 * w, u8_1 / 16);
            check(arm32 ? "vshr.u16" : "ushr", 4 * w, u16_1 / 16);
            check(arm32 ? "vshr.u32" : "ushr", 2 * w, u32_1 / 16);
            check(arm32 ? "vshr.u64" : "ushr", 2 * w, u64_1 / 16);

            // VSHRN    I       -       Shift Right Narrow
            // LLVM15 emits UZP2 if the shift amount is half the width of the vector element.
            const auto shrn_or_uzp2 = [&](int element_width, int shift_amt, int vector_width) {
                constexpr int simd_vector_bits = 128;
                if (((vector_width * element_width) % (simd_vector_bits * 2)) == 0 &&
                    shift_amt == element_width / 2) {
                    return "uzp2";
                }
                return "shrn";
            };
            check(arm32 ? "vshrn.i16" : shrn_or_uzp2(16, 8, 8 * w), 8 * w, i8(i16_1 / 256));
            check(arm32 ? "vshrn.i32" : shrn_or_uzp2(32, 16, 4 * w), 4 * w, i16(i32_1 / 65536));
            check(arm32 ? "vshrn.i64" : shrn_or_uzp2(64, 32, 2 * w), 2 * w, i32(i64_1 >> 32));
            check(arm32 ? "vshrn.i16" : shrn_or_uzp2(16, 8, 8 * w), 8 * w, u8(u16_1 / 256));
            check(arm32 ? "vshrn.i32" : shrn_or_uzp2(32, 16, 4 * w), 4 * w, u16(u32_1 / 65536));
            check(arm32 ? "vshrn.i64" : shrn_or_uzp2(64, 32, 2 * w), 2 * w, u32(u64_1 >> 32));
            check(arm32 ? "vshrn.i16" : "shrn", 8 * w, i8(i16_1 / 16));
            check(arm32 ? "vshrn.i32" : "shrn", 4 * w, i16(i32_1 / 16));
            check(arm32 ? "vshrn.i64" : "shrn", 2 * w, i32(i64_1 / 16));
            check(arm32 ? "vshrn.i16" : "shrn", 8 * w, u8(u16_1 / 16));
            check(arm32 ? "vshrn.i32" : "shrn", 4 * w, u16(u32_1 / 16));
            check(arm32 ? "vshrn.i64" : "shrn", 2 * w, u32(u64_1 / 16));

            // VSLI     X       -       Shift Left and Insert
            // I guess this could be used for (x*256) | (y & 255)? We don't do bitwise ops on integers, so skip it.

            // VSQRT    -       F, D    Square Root
            check(arm32 ? "vsqrt.f32" : "fsqrt", 4 * w, sqrt(f32_1));
            check(arm32 ? "vsqrt.f64" : "fsqrt", 2 * w, sqrt(f64_1));

            // VSRA     I       -       Shift Right and Accumulate
            check(arm32 ? "vsra.s8" : "ssra", 8 * w, i8_2 + i8_1 / 16);
            check(arm32 ? "vsra.s16" : "ssra", 4 * w, i16_2 + i16_1 / 16);
            check(arm32 ? "vsra.s32" : "ssra", 2 * w, i32_2 + i32_1 / 16);
            check(arm32 ? "vsra.s64" : "ssra", 2 * w, i64_2 + i64_1 / 16);
            check(arm32 ? "vsra.u8" : "usra", 8 * w, u8_2 + u8_1 / 16);
            check(arm32 ? "vsra.u16" : "usra", 4 * w, u16_2 + u16_1 / 16);
            check(arm32 ? "vsra.u32" : "usra", 2 * w, u32_2 + u32_1 / 16);
            check(arm32 ? "vsra.u64" : "usra", 2 * w, u64_2 + u64_1 / 16);

            // VSRI     X       -       Shift Right and Insert
            // See VSLI

            // VSUB     I, F    F, D    Subtract
            check(arm32 ? "vsub.i8" : "sub", 8 * w, i8_1 - i8_2);
            check(arm32 ? "vsub.i8" : "sub", 8 * w, u8_1 - u8_2);
            check(arm32 ? "vsub.i16" : "sub", 4 * w, i16_1 - i16_2);
            check(arm32 ? "vsub.i16" : "sub", 4 * w, u16_1 - u16_2);
            check(arm32 ? "vsub.i32" : "sub", 2 * w, i32_1 - i32_2);
            check(arm32 ? "vsub.i32" : "sub", 2 * w, u32_1 - u32_2);
            check(arm32 ? "vsub.i64" : "sub", 2 * w, i64_1 - i64_2);
            check(arm32 ? "vsub.i64" : "sub", 2 * w, u64_1 - u64_2);
            check(arm32 ? "vsub.f32" : "fsub", 4 * w, f32_1 - f32_2);
            check(arm32 ? "vsub.f32" : "fsub", 2 * w, f32_1 - f32_2);

            // VSUBHN   I       -       Subtract and Narrow
            check(arm32 ? "vsubhn.i16" : "subhn", 8 * w, i8((i16_1 - i16_2) / 256));
            check(arm32 ? "vsubhn.i16" : "subhn", 8 * w, u8((u16_1 - u16_2) / 256));
            check(arm32 ? "vsubhn.i32" : "subhn", 4 * w, i16((i32_1 - i32_2) / 65536));
            check(arm32 ? "vsubhn.i32" : "subhn", 4 * w, u16((u32_1 - u32_2) / 65536));
            check(arm32 ? "vsubhn.i64" : "subhn", 2 * w, i32((i64_1 - i64_2) >> 32));
            check(arm32 ? "vsubhn.i64" : "subhn", 2 * w, u32((u64_1 - u64_2) >> 32));

            // VSUBL    I       -       Subtract Long
            check(arm32 ? "vsubl.s8" : "ssubl", 8 * w, i16(i8_1) - i16(i8_2));
            check(arm32 ? "vsubl.u8" : "usubl", 8 * w, u16(u8_1) - u16(u8_2));
            check(arm32 ? "vsubl.s16" : "ssubl", 4 * w, i32(i16_1) - i32(i16_2));
            check(arm32 ? "vsubl.u16" : "usubl", 4 * w, u32(u16_1) - u32(u16_2));
            check(arm32 ? "vsubl.s32" : "ssubl", 2 * w, i64(i32_1) - i64(i32_2));
            check(arm32 ? "vsubl.u32" : "usubl", 2 * w, u64(u32_1) - u64(u32_2));

            check(arm32 ? "vsubl.s8" : "ssubl", 8 * w, i16(i8_1) - i16(in_i8(0)));
            check(arm32 ? "vsubl.u8" : "usubl", 8 * w, u16(u8_1) - u16(in_u8(0)));
            check(arm32 ? "vsubl.s16" : "ssubl", 4 * w, i32(i16_1) - i32(in_i16(0)));
            check(arm32 ? "vsubl.u16" : "usubl", 4 * w, u32(u16_1) - u32(in_u16(0)));
            check(arm32 ? "vsubl.s32" : "ssubl", 2 * w, i64(i32_1) - i64(in_i32(0)));
            check(arm32 ? "vsubl.u32" : "usubl", 2 * w, u64(u32_1) - u64(in_u32(0)));

            // VSUBW    I       -       Subtract Wide
            check(arm32 ? "vsubw.s8" : "ssubw", 8 * w, i16_1 - i8_1);
            check(arm32 ? "vsubw.u8" : "usubw", 8 * w, u16_1 - u8_1);
            check(arm32 ? "vsubw.s16" : "ssubw", 4 * w, i32_1 - i16_1);
            check(arm32 ? "vsubw.u16" : "usubw", 4 * w, u32_1 - u16_1);
            check(arm32 ? "vsubw.s32" : "ssubw", 2 * w, i64_1 - i32_1);
            check(arm32 ? "vsubw.u32" : "usubw", 2 * w, u64_1 - u32_1);
        }

        // VST2 X       -       Store two-element structures
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 128; width <= 128 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 2) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    tmp2(x, y) = select(x % 2 == 0, tmp1(x / 2), tmp1(x / 2 + 16));
                    tmp2.compute_root().vectorize(x, width / bits);
                    std::string op = "vst2." + std::to_string(bits);
                    check(arm32 ? op : "st2", width / bits, tmp2(0, 0) + tmp2(0, 63));
                }
            }
        }

        // Also check when the two expressions interleaved have a common
        // subexpression, which results in a vector var being lifted out.
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 128; width <= 128 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 2) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    Expr e = (tmp1(x / 2) * 2 + 7) / 4;
                    tmp2(x, y) = select(x % 2 == 0, e * 3, e + 17);
                    tmp2.compute_root().vectorize(x, width / bits);
                    std::string op = "vst2." + std::to_string(bits);
                    check(arm32 ? op : "st2", width / bits, tmp2(0, 0) + tmp2(0, 127));
                }
            }
        }

        // VST3 X       -       Store three-element structures
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 192; width <= 192 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 3) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    tmp2(x, y) = select(x % 3 == 0, tmp1(x / 3),
                                        x % 3 == 1, tmp1(x / 3 + 16),
                                        tmp1(x / 3 + 32));
                    tmp2.compute_root().vectorize(x, width / bits);
                    std::string op = "vst3." + std::to_string(bits);
                    check(arm32 ? op : "st3", width / bits, tmp2(0, 0) + tmp2(0, 127));
                }
            }
        }

        // VST4 X       -       Store four-element structures
        for (int sign = 0; sign <= 1; sign++) {
            for (int width = 256; width <= 256 * 4; width *= 2) {
                for (int bits = 8; bits < 64; bits *= 2) {
                    if (width <= bits * 4) continue;
                    Func tmp1, tmp2;
                    tmp1(x) = cast(sign ? Int(bits) : UInt(bits), x);
                    tmp1.compute_root();
                    tmp2(x, y) = select(x % 4 == 0, tmp1(x / 4),
                                        x % 4 == 1, tmp1(x / 4 + 16),
                                        x % 4 == 2, tmp1(x / 4 + 32),
                                        tmp1(x / 4 + 48));
                    tmp2.compute_root().vectorize(x, width / bits);
                    std::string op = "vst4." + std::to_string(bits);
                    check(arm32 ? op : "st4", width / bits, tmp2(0, 0) + tmp2(0, 127));
                }
            }
        }

        // VSTM X       F, D    Store Multiple Registers
        // VSTR X       F, D    Store Register
        // we trust llvm to use these

        // VSWP I       -       Swap Contents
        // Swaps the contents of two registers. Not sure why this would be useful.

        // VTBL X       -       Table Lookup
        // Arm's version of shufps. Allows for arbitrary permutations of a
        // 64-bit vector. We typically use vrev variants instead.

        // VTBX X       -       Table Extension
        // Like vtbl, but doesn't change any elements where the index was
        // out of bounds. Not sure how we'd use this.

        // VTRN X       -       Transpose
        // Swaps the even elements of one vector with the odd elements of
        // another. Not useful for us.

        // VTST I       -       Test Bits
        // check("vtst.32", 4, (bool1 & bool2) != 0);

        // VUZP X       -       Unzip
        // VZIP X       -       Zip
        // Interleave or deinterleave two vectors. Given that we use
        // interleaving loads and stores, it's hard to hit this op with
        // halide.
    }

private:
    const Var x{"x"}, y{"y"};
};
}  // namespace

int main(int argc, char **argv) {
    return SimdOpCheckTest::main<SimdOpCheckARM>(
        argc, argv,
        {
            // IMPORTANT:
            // When adding new targets here, make sure to also update
            // can_run_code in simd_op_check.h to include any new features used.

            Target("arm-32-linux"),
            Target("arm-64-linux"),
            Target("arm-64-linux-arm_dot_prod"),
        });
}