File: simd_op_check_powerpc.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (153 lines) | stat: -rw-r--r-- 6,822 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include "simd_op_check.h"

#include "Halide.h"

#include <stdarg.h>
#include <stdio.h>
#include <string.h>

using namespace Halide;
using namespace Halide::ConciseCasts;

namespace {

class SimdOpCheckPowerPC : public SimdOpCheckTest {
public:
    SimdOpCheckPowerPC(Target t, int w = 768, int h = 128)
        : SimdOpCheckTest(t, w, h) {
        use_vsx = target.has_feature(Target::VSX);
        use_power_arch_2_07 = target.has_feature(Target::POWER_ARCH_2_07);
    }

    void add_tests() override {
        if (target.arch == Target::POWERPC) {
            check_altivec_all();
        }
    }

    void check_altivec_all() {
        Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
        Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
        Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
        Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
        Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
        Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
        Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
        Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
        Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
        Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
        // Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_2 < -0.3f), bool_3 = (f32_3 != -0.34f);

        // Basic AltiVec SIMD instructions.
        for (int w = 1; w <= 4; w++) {
            // Vector Integer Add Instructions.
            check("vaddsbs", 16 * w, i8_sat(i16(i8_1) + i16(i8_2)));
            check("vaddshs", 8 * w, i16_sat(i32(i16_1) + i32(i16_2)));
            check("vaddsws", 4 * w, i32_sat(i64(i32_1) + i64(i32_2)));
            check("vaddubm", 16 * w, i8_1 + i8_2);
            check("vadduhm", 8 * w, i16_1 + i16_2);
            check("vadduwm", 4 * w, i32_1 + i32_2);
            check("vaddubs", 16 * w, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
            check("vadduhs", 8 * w, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
            check("vadduws", 4 * w, u32(min(u64(u32_1) + u64(u32_2), max_u32)));

            // Vector Integer Subtract Instructions.
            check("vsubsbs", 16 * w, i8_sat(i16(i8_1) - i16(i8_2)));
            check("vsubshs", 8 * w, i16_sat(i32(i16_1) - i32(i16_2)));
            check("vsubsws", 4 * w, i32_sat(i64(i32_1) - i64(i32_2)));
            check("vsububm", 16 * w, i8_1 - i8_2);
            check("vsubuhm", 8 * w, i16_1 - i16_2);
            check("vsubuwm", 4 * w, i32_1 - i32_2);
            check("vsububs", 16 * w, u8(max(i16(u8_1) - i16(u8_2), 0)));
            check("vsubuhs", 8 * w, u16(max(i32(u16_1) - i32(u16_2), 0)));
            check("vsubuws", 4 * w, u32(max(i64(u32_1) - i64(u32_2), 0)));

            // Vector Integer Average Instructions.
            check("vavgsb", 16 * w, i8((i16(i8_1) + i16(i8_2) + 1) / 2));
            check("vavgub", 16 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
            check("vavgsh", 8 * w, i16((i32(i16_1) + i32(i16_2) + 1) / 2));
            check("vavguh", 8 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
            check("vavgsw", 4 * w, i32((i64(i32_1) + i64(i32_2) + 1) / 2));
            check("vavguw", 4 * w, u32((u64(u32_1) + u64(u32_2) + 1) / 2));

            // Vector Integer Maximum and Minimum Instructions
            check("vmaxsb", 16 * w, max(i8_1, i8_2));
            check("vmaxub", 16 * w, max(u8_1, u8_2));
            check("vmaxsh", 8 * w, max(i16_1, i16_2));
            check("vmaxuh", 8 * w, max(u16_1, u16_2));
            check("vmaxsw", 4 * w, max(i32_1, i32_2));
            check("vmaxuw", 4 * w, max(u32_1, u32_2));
            check("vminsb", 16 * w, min(i8_1, i8_2));
            check("vminub", 16 * w, min(u8_1, u8_2));
            check("vminsh", 8 * w, min(i16_1, i16_2));
            check("vminuh", 8 * w, min(u16_1, u16_2));
            check("vminsw", 4 * w, min(i32_1, i32_2));
            check("vminuw", 4 * w, min(u32_1, u32_2));

            // Vector Floating-Point Arithmetic Instructions
            check(use_vsx || use_power_arch_2_07 ? "xvaddsp" : "vaddfp", 4 * w, f32_1 + f32_2);
            check(use_vsx || use_power_arch_2_07 ? "xvsubsp" : "vsubfp", 4 * w, f32_1 - f32_2);
            check(use_vsx || use_power_arch_2_07 ? "xvmaddasp" : "vmaddfp", 4 * w, f32_1 * f32_2 + f32_3);

            // check("vnmsubfp", 4, f32_1 - f32_2 * f32_3);

            // Vector Floating-Point Maximum and Minimum Instructions
            check("vmaxfp", 4 * w, max(f32_1, f32_2));
            check("vminfp", 4 * w, min(f32_1, f32_2));
        }

        // Check these if target supports VSX.
        if (use_vsx) {
            for (int w = 1; w <= 4; w++) {
                // VSX Vector Floating-Point Arithmetic Instructions
                check("xvadddp", 2 * w, f64_1 + f64_2);
                check("xvmuldp", 2 * w, f64_1 * f64_2);
                check("xvsubdp", 2 * w, f64_1 - f64_2);
                check("xvaddsp", 4 * w, f32_1 + f32_2);
                check("xvmulsp", 4 * w, f32_1 * f32_2);
                check("xvsubsp", 4 * w, f32_1 - f32_2);
                check("xvmaxdp", 2 * w, max(f64_1, f64_2));
                check("xvmindp", 2 * w, min(f64_1, f64_2));
            }
        }

        // Check these if target supports POWER ISA 2.07 and above.
        // These also include new instructions in POWER ISA 2.06.
        if (use_power_arch_2_07) {
            for (int w = 1; w <= 4; w++) {
                check("vaddudm", 2 * w, i64_1 + i64_2);
                check("vsubudm", 2 * w, i64_1 - i64_2);

                check("vmaxsd", 2 * w, max(i64_1, i64_2));
                check("vmaxud", 2 * w, max(u64_1, u64_2));
                check("vminsd", 2 * w, min(i64_1, i64_2));
                check("vminud", 2 * w, min(u64_1, u64_2));
            }
        }
    }

private:
    bool use_power_arch_2_07{false};
    bool use_vsx{false};
    const Var x{"x"}, y{"y"};
};
}  // namespace

int main(int argc, char **argv) {
    return SimdOpCheckTest::main<SimdOpCheckPowerPC>(
        argc, argv,
        {
            // IMPORTANT:
            // When adding new targets here, make sure to also update
            // can_run_code in simd_op_check.h to include any new features used.

            Target("powerpc-32-linux"),
            Target("powerpc-32-linux-vsx"),
            Target("powerpc-32-linux-power_arch_2_07"),
            Target("powerpc-32-linux-power_arch_2_07-vsx"),
            Target("powerpc-64-linux"),
            Target("powerpc-64-linux-vsx"),
            Target("powerpc-64-linux-power_arch_2_07"),
            Target("powerpc-64-linux-power_arch_2_07-vsx"),
        });
}