1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
#include "simd_op_check.h"
#include "Halide.h"
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
using namespace Halide;
using namespace Halide::ConciseCasts;
namespace {
class SimdOpCheckWASM : public SimdOpCheckTest {
public:
SimdOpCheckWASM(Target t, int w = 768, int h = 1)
: SimdOpCheckTest(t, w, h) {
use_wasm_simd128 = target.has_feature(Target::WasmSimd128);
use_wasm_sign_ext = !target.has_feature(Target::WasmMvpOnly);
use_wasm_sat_float_to_int = !target.has_feature(Target::WasmMvpOnly);
}
void add_tests() override {
if (target.arch == Target::WebAssembly) {
check_wasm_all();
}
}
void check_wasm_all() {
Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_2 < -0.3f), bool_3 = (f32_3 != -0.34f);
check("f32.sqrt", 1, sqrt(f32_1));
check("f32.min", 1, min(f32_1, f32_2));
check("f32.max", 1, max(f32_1, f32_2));
check("f32.ceil", 1, ceil(f32_1));
check("f32.floor", 1, floor(f32_1));
check("f32.trunc", 1, trunc(f32_1));
check("f32.nearest", 1, round(f32_1));
check("f32.abs", 1, abs(f32_1));
check("f32.neg", 1, -f32_1);
if (use_wasm_sat_float_to_int) {
check("i32.trunc_sat_f32_s", 1, i32(f32_1));
check("i32.trunc_sat_f32_u", 1, u32(f32_1));
check("i32.trunc_sat_f64_s", 1, i32(f64_1));
check("i32.trunc_sat_f64_u", 1, u32(f64_1));
check("i64.trunc_sat_f32_s", 1, i64(f32_1));
check("i64.trunc_sat_f32_u", 1, u64(f32_1));
check("i64.trunc_sat_f64_s", 1, i64(f64_1));
check("i64.trunc_sat_f64_u", 1, u64(f64_1));
}
if (use_wasm_sign_ext) {
// TODO(https://github.com/halide/Halide/issues/5130):
// current LLVM doesn't reliably emit i32.extend8_s here --
// but the same bitcode does work when run thru llc. Very odd.
//
// check("i32.extend8_s", 1, i32(i8(x) ^ 1));
// check("i32.extend16_s", 1, i32(i16(x) ^ 1));
// check("i64.extend8_s", 1, i64(i8(x) ^ 1));
// check("i64.extend16_s", 1, i64(i16(x) ^ 1));
// check("i64.extend32_s", 1, i64(i32(x) ^ 1));
}
if (use_wasm_simd128) {
for (int w = 1; w <= 2; w <<= 1) {
// create arbitrary 16-byte constant
check("v128.const", 16 * w, u8_1 * u8(42 + x));
// Create vector with identical lanes
// (Note that later LLVMs will use 64-bit constants for some smaller splats)
check("i8x16.splat", 16 * w, u8_1 * u8(in_u8(2) << 1));
// LLVM13 likes to emit all of these as v128.const
check("v128.const", 8 * w, u16_1 * u16(42));
check("v128.const", 4 * w, u32_1 * u32(42));
check("v128.const", 2 * w, u64_1 * u64(42));
check("v128.const", 8 * w, f32_1 * f32(42));
check("v128.const", 4 * w, f64_1 * f64(42));
// Extract lane as a scalar (extract_lane)
// Replace lane value (replace_lane)
// Skipped: there aren't really idioms where we desire these
// to be used explicitly
// Shuffling using immediate indices
check("i8x16.shuffle", 16 * w, in_u8(2 * x));
check("i8x16.shuffle", 8 * w, in_u16(2 * x));
check("i8x16.shuffle", 4 * w, in_u32(2 * x));
// Swizzling using variable indices
// (This fails to generate, but that's not entirely surprising -- I don't
// think we ever attempt to emit the most general-purpose swizzles in Halide
// code, so this may or may not be a defect.)
//
// TODO: this currently emits a bunch of extract_lane / replace_lane ops,
// so we should definitely try to do better.
// check("v8x16.swizzle", 16*w, in_u8(in_u8(x+32)));
// Integer addition
check("i8x16.add", 16 * w, i8_1 + i8_2);
check("i16x8.add", 8 * w, i16_1 + i16_2);
check("i32x4.add", 4 * w, i32_1 + i32_2);
check("i64x2.add", 2 * w, i64_1 + i64_2);
// Integer subtraction
check("i8x16.sub", 16 * w, i8_1 - i8_2);
check("i16x8.sub", 8 * w, i16_1 - i16_2);
check("i32x4.sub", 4 * w, i32_1 - i32_2);
check("i64x2.sub", 2 * w, i64_1 - i64_2);
// Integer multiplication
// WASM-simd doesn't have an i8x16.mul operation.
// check("i8x16.mul", 16 * w, i8_1 * i8_2);
check("i16x8.mul", 8 * w, i16_1 * i16_2);
check("i32x4.mul", 4 * w, i32_1 * i32_2);
check("i64x2.mul", 2 * w, i64_1 * i64_2);
// Integer dot product (16 -> 32)
for (int f : {2, 4, 8}) {
RDom r(0, f);
for (int v : {1, 2, 4}) {
check("i32x4.dot_i16x8_s", w * v, sum(i32(in_i16(f * x + r)) * in_i16(f * x + r + 32)));
}
}
// Integer negation
check("i8x16.neg", 16 * w, -i8_1);
check("i16x8.neg", 8 * w, -i16_1);
check("i32x4.neg", 4 * w, -i32_1);
check("i64x2.neg", 2 * w, -i64_1);
// Extended (widening) integer multiplication
// Need a register wider than 128 bits for us to generate these
check("i16x8.extmul_low_i8x16_s", 16 * w, i16(i8_1) * i8_2);
check("i32x4.extmul_low_i16x8_s", 8 * w, i32(i16_1) * i16_2);
check("i64x2.extmul_low_i32x4_s", 4 * w, i64(i32_1) * i32_2);
check("i16x8.extmul_low_i8x16_u", 16 * w, u16(u8_1) * u8_2);
check("i32x4.extmul_low_i16x8_u", 8 * w, u32(u16_1) * u16_2);
check("i64x2.extmul_low_i32x4_u", 4 * w, u64(u32_1) * u32_2);
check("i16x8.extmul_high_i8x16_s", 16 * w, i16(i8_1) * i8_2);
check("i32x4.extmul_high_i16x8_s", 8 * w, i32(i16_1) * i16_2);
check("i64x2.extmul_high_i32x4_s", 4 * w, i64(i32_1) * i32_2);
check("i16x8.extmul_high_i8x16_u", 16 * w, u16(u8_1) * u8_2);
check("i32x4.extmul_high_i16x8_u", 8 * w, u32(u16_1) * u16_2);
check("i64x2.extmul_high_i32x4_u", 4 * w, u64(u32_1) * u32_2);
// Extended pairwise integer addition
for (int f : {2, 4}) {
RDom r(0, f);
// A summation reduction that starts at something
// non-trivial, to avoid llvm simplifying accumulating
// widening summations into just widening summations.
auto sum_ = [&](Expr e) {
Func f;
f(x) = cast(e.type(), 123);
f(x) += e;
return f(x);
};
check("i16x8.extadd_pairwise_i8x16_s", 8 * w, sum_(i16(in_i8(f * x + r))));
check("i16x8.extadd_pairwise_i8x16_u", 8 * w, sum_(u16(in_u8(f * x + r))));
// The u8->i16 op uses the unsigned variant
check("i16x8.extadd_pairwise_i8x16_u", 8 * w, sum_(i16(in_u8(f * x + r))));
check("i32x4.extadd_pairwise_i16x8_s", 8 * w, sum_(i32(in_i16(f * x + r))));
check("i32x4.extadd_pairwise_i16x8_u", 8 * w, sum_(u32(in_u16(f * x + r))));
// The u16->i32 op uses the unsigned variant
check("i32x4.extadd_pairwise_i16x8_u", 8 * w, sum_(i32(in_u16(f * x + r))));
}
// Saturating integer addition
check("i8x16.add_sat_s", 16 * w, i8_sat(i16(i8_1) + i16(i8_2)));
check("i8x16.add_sat_u", 16 * w, u8_sat(u16(u8_1) + u16(u8_2)));
check("i16x8.add_sat_s", 8 * w, i16_sat(i32(i16_1) + i32(i16_2)));
check("i16x8.add_sat_u", 8 * w, u16_sat(u32(u16_1) + u32(u16_2)));
// Saturating integer subtraction
check("i8x16.sub_sat_s", 16 * w, i8_sat(i16(i8_1) - i16(i8_2)));
check("i16x8.sub_sat_s", 8 * w, i16_sat(i32(i16_1) - i32(i16_2)));
// N.B. Saturating subtracts are expressed by widening to a *signed* type
check("i8x16.sub_sat_u", 16 * w, u8_sat(i16(u8_1) - i16(u8_2)));
check("i16x8.sub_sat_u", 8 * w, u16_sat(i32(u16_1) - i32(u16_2)));
// Saturating integer Q-format rounding multiplication
// Note: division in Halide always rounds down (not towards
// zero). Otherwise these patterns would be more complicated.
check("i16x8.q15mulr_sat_s", 8 * w, i16_sat((i32(i16_1) * i32(i16_2) + (1 << 14)) / (1 << 15)));
// Lane-wise integer minimum
check("i8x16.min_s", 16 * w, min(i8_1, i8_2));
check("i16x8.min_s", 8 * w, min(i16_1, i16_2));
check("i32x4.min_s", 4 * w, min(i32_1, i32_2));
check("i8x16.min_u", 16 * w, min(u8_1, u8_2));
check("i16x8.min_u", 8 * w, min(u16_1, u16_2));
check("i32x4.min_u", 4 * w, min(u32_1, u32_2));
// Lane-wise integer maximum
check("i8x16.max_s", 16 * w, max(i8_1, i8_2));
check("i16x8.max_s", 8 * w, max(i16_1, i16_2));
check("i32x4.max_s", 4 * w, max(i32_1, i32_2));
check("i8x16.max_u", 16 * w, max(u8_1, u8_2));
check("i16x8.max_u", 8 * w, max(u16_1, u16_2));
check("i32x4.max_u", 4 * w, max(u32_1, u32_2));
// Lane-wise integer rounding average
check("i8x16.avgr_u", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
check("i8x16.avgr_u", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) >> 1));
check("i16x8.avgr_u", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
check("i16x8.avgr_u", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) >> 1));
// Lane-wise integer absolute value
check("i8x16.abs", 16 * w, abs(i8_1));
check("i16x8.abs", 8 * w, abs(i16_1));
check("i32x4.abs", 4 * w, abs(i32_1));
check("i64x2.abs", 2 * w, abs(i64_1));
// Left shift by constant scalar
check("i8x16.shl", 16 * w, i8_1 << i8(7));
check("i16x8.shl", 8 * w, i16_1 << i16(7));
check("i32x4.shl", 4 * w, i32_1 << i32(7));
check("i64x2.shl", 2 * w, i64_1 << i64(7));
// unsigned
check("i8x16.shl", 16 * w, u8_1 << u8(7));
check("i16x8.shl", 8 * w, u16_1 << u16(7));
check("i32x4.shl", 4 * w, u32_1 << u32(7));
check("i64x2.shl", 2 * w, u64_1 << u64(7));
// Left shift by variable-but-uniform-across-all-lanes scalar
// TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
// check("i8x16.shl", 16*w, i8_1 << in_i8(0));
// check("i16x8.shl", 8*w, i16_1 << in_i16(0));
// check("i32x4.shl", 4*w, i32_1 << in_i32(0));
// check("i64x2.shl", 2*w, i64_1 << in_i64(0));
// check("i8x16.shl", 16*w, u8_1 << in_u8(0));
// check("i16x8.shl", 8*w, u16_1 << in_u16(0));
// check("i32x4.shl", 4*w, u32_1 << in_u32(0));
// check("i64x2.shl", 2*w, u64_1 << in_u64(0));
// Right shift by constant scalar
check("i8x16.shr_s", 16 * w, i8_1 >> i8(7));
check("i16x8.shr_s", 8 * w, i16_1 >> i16(7));
check("i32x4.shr_s", 4 * w, i32_1 >> i32(7));
check("i64x2.shr_s", 2 * w, i64_1 >> i64(7));
// unsigned
check("i8x16.shr_u", 16 * w, u8_1 >> i8(7));
check("i16x8.shr_u", 8 * w, u16_1 >> i16(7));
check("i32x4.shr_u", 4 * w, u32_1 >> i32(7));
check("i64x2.shr_u", 2 * w, u64_1 >> i64(7));
// Right shift by variable-but-uniform-across-all-lanes scalar
// TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
// check("i8x16.shr_s", 16*w, i8_1 >> in_i8(0));
// check("i16x8.shr_s", 8*w, i16_1 >> in_i16(0));
// check("i32x4.shr_s", 4*w, i32_1 >> in_i32(0));
// check("i64x2.shr_s", 2*w, i64_1 >> in_i64(0));
// check("i8x16.shr_u", 16*w, u8_1 >> in_i8(0));
// check("i16x8.shr_u", 8*w, u16_1 >> in_i16(0));
// check("i32x4.shr_u", 4*w, u32_1 >> in_i32(0));
// check("i64x2.shr_u", 2*w, u64_1 >> in_i64(0));
// Bitwise logic
check("v128.and", 16 * w, i8_1 & i8_2);
check("v128.and", 8 * w, i16_1 & i16_2);
check("v128.and", 4 * w, i32_1 & i32_2);
check("v128.and", 2 * w, i64_1 & i64_2);
check("v128.or", 16 * w, i8_1 | i8_2);
check("v128.or", 8 * w, i16_1 | i16_2);
check("v128.or", 4 * w, i32_1 | i32_2);
check("v128.or", 2 * w, i64_1 | i64_2);
check("v128.xor", 16 * w, i8_1 ^ i8_2);
check("v128.xor", 8 * w, i16_1 ^ i16_2);
check("v128.xor", 4 * w, i32_1 ^ i32_2);
check("v128.xor", 2 * w, i64_1 ^ i64_2);
check("v128.not", 16 * w, ~i8_1);
check("v128.not", 8 * w, ~i16_1);
check("v128.not", 4 * w, ~i32_1);
check("v128.not", 2 * w, ~i64_1);
check("v128.andnot", 16 * w, i8_1 & ~i8_2);
check("v128.andnot", 8 * w, i16_1 & ~i16_2);
check("v128.andnot", 4 * w, i32_1 & ~i32_2);
check("v128.andnot", 2 * w, i64_1 & ~i64_2);
// Bitwise select
check("v128.bitselect", 16 * w, ((u8_1 & u8_3) | (u8_2 & ~u8_3)));
check("v128.bitselect", 8 * w, ((u16_1 & u16_3) | (u16_2 & ~u16_3)));
check("v128.bitselect", 4 * w, ((u32_1 & u32_3) | (u32_2 & ~u32_3)));
check("v128.bitselect", 2 * w, ((u64_1 & u64_3) | (u64_2 & ~u64_3)));
check("v128.bitselect", 16 * w, select(bool_1, u8_1, u8_2));
check("v128.bitselect", 8 * w, select(bool_1, u16_1, u16_2));
check("v128.bitselect", 4 * w, select(bool_1, u32_1, u32_2));
check("v128.bitselect", 2 * w, select(bool_1, u64_1, u64_2));
check("v128.bitselect", 4 * w, select(bool_1, f32_1, f32_2));
check("v128.bitselect", 2 * w, select(bool_1, f64_1, f64_2));
// Lane-wise Population Count
check("i8x16.popcnt", 8 * w, popcount(i8_1));
check("i8x16.popcnt", 8 * w, popcount(u8_1));
// Any lane true -- for VectorReduce::Or on 8-bit data
// All lanes true -- for VectorReduce::And on 8-bit data
// TODO: does Halide have any idiom that could usefully use these?
// - v128.any_true could be used for VectorReduce::Or with type bool.
// - i8x16.all_true could be used for VectorReduce::And with type bool.
// - the other all_true variants seem unlikely to be obviously useful in Halide.
// Bitmask extraction
// TODO: does Halide have any idiom that could usefully use these?
// They all extract the high bit of each lane and return a scalar mask of them.
// These all seem unlikely to be obviously useful in Halide.
// check("i8x16.bitmask", 16 * w, ???);
// check("i16x8.bitmask", 8 * w, ???);
// check("i32x4.bitmask", 4 * w, ???);
// check("i64x2.bitmask", 2 * w, ???);
// Equality
check("i8x16.eq", 16 * w, i8_1 == i8_2);
check("i16x8.eq", 8 * w, i16_1 == i16_2);
check("i32x4.eq", 4 * w, i32_1 == i32_2);
check("i64x2.eq", 2 * w, i64_1 == i64_2);
check("f32x4.eq", 4 * w, f32_1 == f32_2);
check("f64x2.eq", 2 * w, f64_1 == f64_2);
// Non-equality
check("i8x16.ne", 16 * w, i8_1 != i8_2);
check("i16x8.ne", 8 * w, i16_1 != i16_2);
check("i32x4.ne", 4 * w, i32_1 != i32_2);
check("i64x2.ne", 2 * w, i64_1 != i64_2);
check("f32x4.ne", 4 * w, f32_1 != f32_2);
check("f64x2.ne", 2 * w, f64_1 != f64_2);
// Less than
check("i8x16.lt_s", 16 * w, i8_1 < i8_2);
check("i8x16.lt_u", 16 * w, u8_1 < u8_2);
check("i16x8.lt_s", 8 * w, i16_1 < i16_2);
check("i16x8.lt_u", 8 * w, u16_1 < u16_2);
check("i32x4.lt_s", 4 * w, i32_1 < i32_2);
check("i32x4.lt_u", 4 * w, u32_1 < u32_2);
check("i64x2.lt_s", 2 * w, i64_1 < i64_2);
check("f32x4.lt", 4 * w, f32_1 < f32_2);
check("f64x2.lt", 2 * w, f64_1 < f64_2);
// Less than or equal
check("i8x16.le_s", 16 * w, i8_1 <= i8_2);
check("i8x16.le_u", 16 * w, u8_1 <= u8_2);
check("i16x8.le_s", 8 * w, i16_1 <= i16_2);
check("i16x8.le_u", 8 * w, u16_1 <= u16_2);
check("i32x4.le_s", 4 * w, i32_1 <= i32_2);
check("i32x4.le_u", 4 * w, u32_1 <= u32_2);
check("i64x2.le_s", 2 * w, i64_1 <= i64_2);
check("f32x4.le", 4 * w, f32_1 <= f32_2);
check("f64x2.le", 2 * w, f64_1 <= f64_2);
// Greater than
// SKIPPED: Halide aggressively simplifies > into <= so we shouldn't see these
// Greater than or equal
// SKIPPED: Halide aggressively simplifies >= into < so we shouldn't see these
// Load
check("v128.load", 16 * w, i8_1);
check("v128.load", 8 * w, i16_1);
check("v128.load", 4 * w, i32_1);
check("v128.load", 4 * w, f32_1);
check("v128.load", 2 * w, f64_1);
// Load and Zero-Pad
// TODO
// check("v128.load32_zero", 2 * w, in_u32(0));
// check("v128.load64_zero", 2 * w, in_u64(0));
// Load vector with identical lanes generates *.splat.
check("i8x16.splat", 16 * w, in_u8(0));
check("i16x8.splat", 8 * w, in_u16(0));
check("i32x4.splat", 4 * w, in_u32(0));
check("i64x2.splat", 2 * w, in_u64(0));
// Load Lane
// TODO: does Halide have any idiom that obviously generates these?
// Load and Extend
if (w == 1) {
check("i16x8.load8x8_s", 8 * w, i16(i8_1));
check("i16x8.load8x8_u", 8 * w, u16(u8_1));
check("i32x4.load16x4_s", 4 * w, i32(i16_1));
check("i32x4.load16x4_u", 4 * w, u32(u16_1));
check("i64x2.load32x2_s", 2 * w, i64(i32_1));
check("i64x2.load32x2_u", 2 * w, u64(u32_1));
}
// Store
check("v128.store", 16 * w, i8_1);
check("v128.store", 8 * w, i16_1);
check("v128.store", 4 * w, i32_1);
check("v128.store", 4 * w, f32_1);
check("v128.store", 2 * w, f64_1);
// Store Lane
// TODO: does Halide have any idiom that obviously generates these?
// Negation
check("f32x4.neg", 4 * w, -f32_1);
check("f64x2.neg", 2 * w, -f64_1);
// Absolute value
check("f32x4.abs", 4 * w, abs(f32_1));
check("f64x2.abs", 2 * w, abs(f64_1));
// NaN-propagating minimum
check("f32x4.min", 4 * w, min(f32_1, f32_2));
check("f64x2.min", 2 * w, min(f64_1, f64_2));
// NaN-propagating maximum
check("f32x4.max", 4 * w, max(f32_1, f32_2));
check("f64x2.max", 2 * w, max(f64_1, f64_2));
// Pseudo-minimum
// Pseudo-maximum
// TODO: does Halide have any idiom that obviously generates these?
// Floating-point addition
check("f32x4.add", 4 * w, f32_1 + f32_2);
check("f64x2.add", 2 * w, f64_1 + f64_2);
// Floating-point subtraction
check("f32x4.sub", 4 * w, f32_1 - f32_2);
check("f64x2.sub", 2 * w, f64_1 - f64_2);
// Floating-point division
check("f32x4.div", 4 * w, f32_1 / f32_2);
check("f64x2.div", 2 * w, f64_1 / f64_2);
// Floating-point multiplication
check("f32x4.mul", 4 * w, f32_1 * f32_2);
check("f64x2.mul", 2 * w, f64_1 * f64_2);
// Square root
check("f32x4.sqrt", 4 * w, sqrt(f32_1));
check("f64x2.sqrt", 2 * w, sqrt(f64_1));
// Round to integer above (ceiling)
check("f32x4.ceil", 4 * w, ceil(f32_1));
check("f64x2.ceil", 2 * w, ceil(f64_1));
// Round to integer below (floor)
check("f32x4.floor", 4 * w, floor(f32_1));
check("f64x2.floor", 2 * w, floor(f64_1));
// Round to integer toward zero (truncate to integer)
check("f32x4.trunc", 4 * w, trunc(f32_1));
check("f64x2.trunc", 2 * w, trunc(f64_1));
// Round to nearest integer, ties to even)
check("f32x4.nearest", 4 * w, round(f32_1));
check("f64x2.nearest", 2 * w, round(f64_1));
// Integer to single-precision floating point
check("f32x4.convert_i32x4_s", 8 * w, cast<float>(i32_1));
check("f32x4.convert_i32x4_u", 8 * w, cast<float>(u32_1));
// Integer to double-precision floating point
check("f64x2.convert_low_i32x4_s", 2 * w, cast<double>(i32_1));
check("f64x2.convert_low_i32x4_u", 2 * w, cast<double>(u32_1));
// Single-precision floating point to integer with saturation
check("i32x4.trunc_sat_f32x4_s", 4 * w, cast<int32_t>(f32_1));
check("i32x4.trunc_sat_f32x4_u", 4 * w, cast<uint32_t>(f32_1));
// Double-precision floating point to integer with saturation
// TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
// check("i32x4.trunc_sat_f64x2_s_zero", 4 * w, cast<int32_t>(f64_1));
// check("i32x4.trunc_sat_f64x2_u_zero", 4 * w, cast<uint32_t>(f64_1));
// Double-precision floating point to single-precision
// TODO(https://github.com/halide/Halide/issues/5130): NOT BEING GENERATED AT TRUNK
// check("f32x4.demote_f64x2_zero", 4 * w, ???);
// Single-precision floating point to double-precision
// TODO(https://github.com/halide/Halide/issues/5130): broken for > 128bit vector widths
if (w < 2) {
check("f64x2.promote_low_f32x4", 2 * w, cast<double>(f32_1));
}
// Integer to integer narrowing
check("i8x16.narrow_i16x8_s", 16 * w, i8_sat(i16_1));
check("i8x16.narrow_i16x8_u", 16 * w, u8_sat(i16_1));
check("i16x8.narrow_i32x4_s", 8 * w, i16_sat(i32_1));
check("i16x8.narrow_i32x4_u", 8 * w, u16_sat(i32_1));
check("i16x8.narrow_i32x4_s", 8 * w, i8_sat(i32_1));
check("i16x8.narrow_i32x4_s", 8 * w, u8_sat(i32_1));
// Test that bounds-inference instruction selection is working properly.
check("i8x16.narrow_i16x8_s", 16 * w, i8_sat(u16_1 >> 1));
check("i8x16.narrow_i16x8_u", 16 * w, u8_sat(u16_1 >> 1));
check("i16x8.narrow_i32x4_s", 8 * w, i16_sat(u32_1 >> 1));
check("i16x8.narrow_i32x4_u", 8 * w, u16_sat(u32_1 >> 1));
// Integer to integer widening
check("i16x8.extend_low_i8x16_s", 16 * w, i16(i8_1));
check("i16x8.extend_high_i8x16_s", 16 * w, i16(i8_1));
check("i16x8.extend_low_i8x16_u", 16 * w, u16(u8_1));
check("i16x8.extend_high_i8x16_u", 16 * w, u16(u8_1));
check("i32x4.extend_low_i16x8_s", 8 * w, i32(i16_1));
check("i32x4.extend_high_i16x8_s", 8 * w, i32(i16_1));
check("i32x4.extend_low_i16x8_u", 8 * w, u32(u16_1));
check("i32x4.extend_high_i16x8_u", 8 * w, u32(u16_1));
check("i64x2.extend_low_i32x4_s", 4 * w, i64(i32_1));
check("i64x2.extend_high_i32x4_s", 4 * w, i64(i32_1));
check("i64x2.extend_low_i32x4_u", 4 * w, u64(u32_1));
check("i64x2.extend_high_i32x4_u", 4 * w, u64(u32_1));
}
}
}
private:
bool use_wasm_simd128{false};
bool use_wasm_sat_float_to_int{false};
bool use_wasm_sign_ext{false};
const Var x{"x"}, y{"y"};
};
} // namespace
int main(int argc, char **argv) {
#ifdef HALIDE_INTERNAL_USING_ASAN
printf("[SKIP] This test causes an ASAN crash relating to ASAN's use of sigaltstack. It doesn't seem to be due to a bug in the test itself (see https://github.com/halide/Halide/pull/8078#issuecomment-1935407878)");
return 0;
#endif
return SimdOpCheckTest::main<SimdOpCheckWASM>(
argc, argv,
{
// IMPORTANT:
// When adding new targets here, make sure to also update
// can_run_code in simd_op_check.h to include any new features used.
Target("wasm-32-wasmrt"),
Target("wasm-32-wasmrt-wasm_simd128"),
Target("wasm-32-wasmrt-wasm_mvponly"),
});
}
|