1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
|
#include "simd_op_check.h"
#include "Halide.h"
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
using namespace Halide;
using namespace Halide::ConciseCasts;
namespace {
// This tests that we can correctly generate all the simd ops for x86 targets.
class SimdOpCheckX86 : public SimdOpCheckTest {
public:
SimdOpCheckX86(Target t, int w = 768, int h = 128)
: SimdOpCheckTest(t, w, h) {
// We only test the skylake variant of avx512 here
use_avx512 = (target.has_feature(Target::AVX512_Cannonlake) ||
target.has_feature(Target::AVX512_Skylake));
if (target.has_feature(Target::AVX512) && !use_avx512) {
std::cerr << "Warning: This test is only configured for the skylake variant of avx512. Expect failures\n";
}
use_avx2 = use_avx512 || (target.has_feature(Target::AVX512) || target.has_feature(Target::AVX2));
use_avx = use_avx2 || target.has_feature(Target::AVX);
use_sse41 = use_avx || target.has_feature(Target::SSE41);
// There's no separate target for SSSE3; we currently enable it in
// lockstep with SSE4.1
use_ssse3 = use_sse41;
// There's no separate target for SSS4.2; we currently assume that
// it should be used iff AVX is being used.
use_sse42 = use_avx;
use_avx512_vnni = target.has_feature(Target::AVX512_Zen4);
use_avx_vnni = target.has_feature(Target::AVXVNNI);
}
void add_tests() override {
// Queue up a bunch of tasks representing each test to run.
if (target.arch == Target::X86) {
check_sse_and_avx();
}
}
void check_sse_and_avx() {
Expr f64_1 = in_f64(x), f64_2 = in_f64(x + 16), f64_3 = in_f64(x + 32);
Expr f32_1 = in_f32(x), f32_2 = in_f32(x + 16), f32_3 = in_f32(x + 32);
Expr f16_1 = in_f16(x), f16_2 = in_f16(x + 16), f16_3 = in_f16(x + 32);
Expr i8_1 = in_i8(x), i8_2 = in_i8(x + 16), i8_3 = in_i8(x + 32);
Expr u8_1 = in_u8(x), u8_2 = in_u8(x + 16), u8_3 = in_u8(x + 32);
Expr i16_1 = in_i16(x), i16_2 = in_i16(x + 16), i16_3 = in_i16(x + 32);
Expr u16_1 = in_u16(x), u16_2 = in_u16(x + 16), u16_3 = in_u16(x + 32);
Expr i32_1 = in_i32(x), i32_2 = in_i32(x + 16), i32_3 = in_i32(x + 32);
Expr u32_1 = in_u32(x), u32_2 = in_u32(x + 16), u32_3 = in_u32(x + 32);
Expr i64_1 = in_i64(x), i64_2 = in_i64(x + 16), i64_3 = in_i64(x + 32);
Expr u64_1 = in_u64(x), u64_2 = in_u64(x + 16), u64_3 = in_u64(x + 32);
Expr bool_1 = (f32_1 > 0.3f), bool_2 = (f32_2 < -0.3f), bool_3 = (f32_3 != -0.34f);
// MMX and SSE1 (in 64 and 128 bits)
for (int w = 1; w <= 4; w++) {
// LLVM promotes these to wider types for 64-bit vectors,
// which is probably fine. Often you're 64-bits wide because
// you're about to upcast, and using the wider types makes the
// upcast cheap.
if (w > 1) {
check("paddb", 8 * w, u8_1 + u8_2);
check("psubb", 8 * w, u8_1 - u8_2);
check("paddw", 4 * w, u16_1 + u16_2);
check("psubw", 4 * w, u16_1 - u16_2);
check("pmullw", 4 * w, i16_1 * i16_2);
check("paddd", 2 * w, i32_1 + i32_2);
check("psubd", 2 * w, i32_1 - i32_2);
}
check("paddsb", 8 * w, i8_sat(i16(i8_1) + i16(i8_2)));
// Add a test with a constant as there was a bug on this.
check("paddsb", 8 * w, i8_sat(i16(i8_1) + i16(3)));
check("psubsb", 8 * w, i8_sat(i16(i8_1) - i16(i8_2)));
check("paddusb", 8 * w, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
check("psubusb", 8 * w, u8(max(i16(u8_1) - i16(u8_2), 0)));
check("paddsw", 4 * w, i16_sat(i32(i16_1) + i32(i16_2)));
check("psubsw", 4 * w, i16_sat(i32(i16_1) - i32(i16_2)));
check("paddusw", 4 * w, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
check("psubusw", 4 * w, u16(max(i32(u16_1) - i32(u16_2), 0)));
// unsigned absd is lowered as an or of saturating subtracts
check("psubusb", 16 * w, absd(u8_1, u8_2));
check("psubusw", 16 * w, absd(u16_1, u16_2));
check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) / (256 * 256)));
check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) >> cast<unsigned>(16)));
check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) >> cast<int>(16)));
check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) << cast<int>(-16)));
// Add a test with a constant as there was a bug on this.
check("pmulhw", 4 * w, i16((3 * i32(i16_2)) / (256 * 256)));
// There was a bug with this case too. CSE was lifting out the
// information that made it possible to do the narrowing.
check("pmulhw", 4 * w, select(in_u8(0) == 0, i16((3 * i32(i16_2)) / (256 * 256)), i16((5 * i32(i16_2)) / (256 * 256))));
check("pmulhuw", 4 * w, i16_1 / 15);
// Shifts by amounts other than 16 can also use this instruction, by
// preshifting an arg (when there are bits of headroom), or
// postshifting the result.
check("pmulhuw", 4 * w, u16((u32(u16_1) * u32(u8_2)) >> 13));
check("pmulhw", 4 * w, i16((i32(i16_1) * i32(i16_2)) >> 17));
check("pmulhuw", 4 * w, u16((u32(u16_1) * u32(u16_2)) >> 18));
if (w > 1) { // LLVM does a lousy job at the comparisons for 64-bit types
check("pcmp*b", 8 * w, select(u8_1 == u8_2, u8(1), u8(2)));
check("pcmp*b", 8 * w, select(u8_1 > u8_2, u8(1), u8(2)));
check("pcmp*w", 4 * w, select(u16_1 == u16_2, u16(1), u16(2)));
check("pcmp*w", 4 * w, select(u16_1 > u16_2, u16(1), u16(2)));
check("pcmp*d", 2 * w, select(u32_1 == u32_2, u32(1), u32(2)));
check("pcmp*d", 2 * w, select(u32_1 > u32_2, u32(1), u32(2)));
}
// SSE 1
check("addps", 2 * w, f32_1 + f32_2);
check("subps", 2 * w, f32_1 - f32_2);
check("mulps", 2 * w, f32_1 * f32_2);
// Padding out the lanes of a div isn't necessarily a good
// idea, and so llvm doesn't do it.
if (w > 1) {
// LLVM no longer generates division instructions with
// fast-math on (instead it uses the approximate
// reciprocal, a newtown rhapson step, and a
// multiplication by the numerator).
// check("divps", 2*w, f32_1 / f32_2);
}
check(use_avx512 ? "vrsqrt*ps" : "rsqrtps", 2 * w, fast_inverse_sqrt(f32_1));
check(use_avx512 ? "vrcp*ps" : "rcpps", 2 * w, fast_inverse(f32_1));
check("sqrtps", 2 * w, sqrt(f32_2));
check("maxps", 2 * w, max(f32_1, f32_2));
check("minps", 2 * w, min(f32_1, f32_2));
check("pavgb", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
check("pavgb", 8 * w, u8((u16(u8_1) + u16(u8_2) + 1) >> 1));
check("pavgw", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
check("pavgw", 4 * w, u16((u32(u16_1) + u32(u16_2) + 1) >> 1));
// Rounding right shifts, halving subtracts, and signed rounding
// averages should also use pavg
check("pavgb", 8 * w, rounding_shift_right(u8_1, 2));
check("pavgw", 4 * w, rounding_shift_right(u16_1, 2));
check("pavgb", 8 * w, halving_sub(u8_1, u8_2));
check("pavgw", 4 * w, halving_sub(u16_1, u16_2));
check("pavgb", 8 * w, rounding_halving_add(i8_1, i8_2));
check("pavgw", 4 * w, rounding_halving_add(i16_1, i16_2));
check("pmaxsw", 4 * w, max(i16_1, i16_2));
check("pminsw", 4 * w, min(i16_1, i16_2));
check("pmaxub", 8 * w, max(u8_1, u8_2));
check("pminub", 8 * w, min(u8_1, u8_2));
const char *check_pmulhuw = (use_avx2 && w > 3) ? "vpmulhuw*ymm" : "pmulhuw";
check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) / (256 * 256)));
check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) >> cast<unsigned>(16)));
check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) >> cast<int>(16)));
check(check_pmulhuw, 4 * w, u16((u32(u16_1) * u32(u16_2)) << cast<int>(-16)));
check(check_pmulhuw, 4 * w, u16_1 / 15);
check("cmpeqps", 2 * w, select(f32_1 == f32_2, 1.0f, 2.0f));
check("cmpltps", 2 * w, select(f32_1 < f32_2, 1.0f, 2.0f));
// These get normalized to not of eq, and not of lt with the args flipped
// check("cmpneqps", 2*w, cast<int32_t>(f32_1 != f32_2));
// check("cmpleps", 2*w, cast<int32_t>(f32_1 <= f32_2));
}
// These guys get normalized to the integer versions for widths
// other than 128-bits. Avx512 has mask-register versions.
// check("andnps", 4, bool_1 & (~bool_2));
check(use_avx512 ? "korw" : "orps", 4, bool_1 | bool_2);
check(use_avx512 ? "kxorw" : "xorps", 4, bool_1 ^ bool_2);
if (!use_avx512) {
// avx512 implicitly ands the predicates by masking the second
// comparison using the result of the first. Clever!
check("andps", 4, bool_1 & bool_2);
}
// These ones are not necessary, because we just flip the args and cmpltps or cmpleps
// check("cmpnleps", 4, select(f32_1 > f32_2, 1.0f, 2.0f));
// check("cmpnltps", 4, select(f32_1 >= f32_2, 1.0f, 2.0f));
check("shufps", 4, in_f32(2 * x));
// SSE 2
for (int w : {2, 4}) {
check("addpd", w, f64_1 + f64_2);
check("subpd", w, f64_1 - f64_2);
check("mulpd", w, f64_1 * f64_2);
check("divpd", w, f64_1 / f64_2);
check("sqrtpd", w, sqrt(f64_2));
check("maxpd", w, max(f64_1, f64_2));
check("minpd", w, min(f64_1, f64_2));
check("cmpeqpd", w, select(f64_1 == f64_2, 1.0f, 2.0f));
// check("cmpneqpd", w, select(f64_1 != f64_2, 1.0f, 2.0f));
// check("cmplepd", w, select(f64_1 <= f64_2, 1.0f, 2.0f));
check("cmpltpd", w, select(f64_1 < f64_2, 1.0f, 2.0f));
// llvm is pretty inconsistent about which ops get generated
// for casts. We don't intend to catch these for now, so skip
// them.
// check("cvttpd2dq", 4, i32(f64_1));
// check("cvtdq2pd", 4, f64(i32_1));
// check("cvttps2dq", 4, i32(f32_1));
// check("cvtdq2ps", 4, f32(i32_1));
// check("cvtps2pd", 4, f64(f32_1));
// check("cvtpd2ps", 4, f32(f64_1));
check("paddq", w, i64_1 + i64_2);
check("psubq", w, i64_1 - i64_2);
check(use_avx512 ? "vpmullq" : "pmuludq", w, u64_1 * u64_2);
const char *check_suffix = "";
if (use_avx2 && w > 3) {
check_suffix = "*ymm";
}
check(std::string("packssdw") + check_suffix, 4 * w, i16_sat(i32_1));
check(std::string("packsswb") + check_suffix, 8 * w, i8_sat(i16_1));
check(std::string("packuswb") + check_suffix, 8 * w, u8_sat(i16_1));
check(std::string("packssdw") + check_suffix, 8 * w, u8_sat(i32_1));
check(std::string("packssdw") + check_suffix, 8 * w, i8_sat(i32_1));
// A uint without the top bit set can be reinterpreted as an int
// so that packssdw can be used.
check(std::string("packssdw") + check_suffix, 4 * w, i16_sat(u32_1 >> 1));
check(std::string("packssdw") + check_suffix, 8 * w, i8_sat(u32_1 >> 1));
check(std::string("packsswb") + check_suffix, 8 * w, i8_sat(u16_1 >> 1));
// Sum-of-absolute-difference ops
{
const int f = 8; // reduction factor.
RDom r(0, f);
check("psadbw", w, sum(u64(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("psadbw", w, sum(u32(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("psadbw", w, sum(u16(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("psadbw", w, sum(i64(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("psadbw", w, sum(i32(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("psadbw", w, sum(i16(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
}
}
// SSE 3 / SSSE 3
if (use_ssse3) {
for (int w = 2; w <= 4; w++) {
check("pmulhrsw", 4 * w, i16((i32(i16_1) * i32(i16_2) + 16384) >> 15));
check("pmulhrsw", 4 * w, i16_sat((i32(i16_1) * i32(i16_2) + 16384) >> 15));
// Should be able to use the non-saturating form of pmulhrsw,
// because the second arg can't be -32768, so the i16_sat
// doesn't actually need to saturate.
check("pmulhrsw", 4 * w, i16_sat((i32(i16_1) * i32(i16_2 / 2) + 16384) >> 15));
// Should be able to use pmulhrsw despite the shift being too
// small, because there are enough bits of headroom to shift
// left one of the args:
check("pmulhrsw", 4 * w, i16_sat((i32(i16_1) * i32(i16_2 / 2) + 8192) >> 14));
check("pmulhrsw", 4 * w, i16((i32(i16_1) * i32(i16_2 / 3) + 8192) >> 14));
check("pabsb", 8 * w, abs(i8_1));
check("pabsw", 4 * w, abs(i16_1));
check("pabsd", 2 * w, abs(i32_1));
}
// Horizontal ops. Our support for them uses intrinsics
// from LLVM 9+.
// Paradoxically, haddps is a bad way to do horizontal
// adds down to a single scalar on most x86. A better
// sequence (according to Peter Cordes on stackoverflow)
// is movshdup, addps, movhlps, addss. haddps is still
// good if you're only partially reducing and your result
// is at least one native vector, if only to save code
// size, but LLVM really really tries to avoid it and
// replace it with shuffles whenever it can, so we won't
// test for it.
//
// See:
// https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-float-vector-sum-on-x86
// For reducing down to a scalar we expect to see addps
// and movshdup. We'll sniff for the movshdup.
check("movshdup", 1, sum(in_f32(RDom(0, 2) + 2 * x)));
check("movshdup", 1, sum(in_f32(RDom(0, 4) + 4 * x)));
check("movshdup", 1, sum(in_f32(RDom(0, 16) + 16 * x)));
// The integer horizontal add operations are pretty
// terrible on all x86 variants, and LLVM does its best to
// avoid generating those too, so we won't test that here
// either.
// Min reductions should use phminposuw when
// possible. This only exists for u16. X86 is weird.
check("phminposuw", 1, minimum(in_u16(RDom(0, 8) + 8 * x)));
// Max reductions can use the same instruction by first
// flipping the bits.
check("phminposuw", 1, maximum(in_u16(RDom(0, 8) + 8 * x)));
// Reductions over signed ints can flip the sign bit
// before and after (equivalent to adding 128).
check("phminposuw", 1, minimum(in_i16(RDom(0, 8) + 8 * x)));
check("phminposuw", 1, maximum(in_i16(RDom(0, 8) + 8 * x)));
// Reductions over 8-bit ints can widen first
check("phminposuw", 1, minimum(in_u8(RDom(0, 16) + 16 * x)));
check("phminposuw", 1, maximum(in_u8(RDom(0, 16) + 16 * x)));
check("phminposuw", 1, minimum(in_i8(RDom(0, 16) + 16 * x)));
check("phminposuw", 1, maximum(in_i8(RDom(0, 16) + 16 * x)));
for (int w = 2; w <= 8; w++) {
const char *check_pmaddubsw =
(use_avx2 && w >= 4) ? "vpmaddubsw" : "pmaddubsw";
RDom r2(0, 2);
check(check_pmaddubsw, 4 * w, saturating_sum(i16(in_u8(2 * x + r2)) * in_i8(2 * x + r2 + 32)));
check(check_pmaddubsw, 4 * w, saturating_sum(i16(in_i8(2 * x + r2)) * in_u8(2 * x + r2 + 32)));
// uint8 -> uint16 or int16 and int8 -> int16 horizontal widening adds should use pmaddubsw.
check(check_pmaddubsw, 4 * w, sum(u16(in_u8(2 * x + r2))));
check(check_pmaddubsw, 4 * w, sum(i16(in_u8(2 * x + r2))));
check(check_pmaddubsw, 4 * w, sum(i16(in_i8(2 * x + r2))));
check(check_pmaddubsw, 4 * w, u16(in_u8(2 * x)) + in_u8(2 * x + 1));
check(check_pmaddubsw, 4 * w, i16(in_u8(2 * x)) + in_u8(2 * x + 1));
check(check_pmaddubsw, 4 * w, i16(in_i8(2 * x)) + in_i8(2 * x + 1));
}
}
// SSE 4.1
for (int w = 2; w <= 8; w++) {
// We generated pmaddwd when we do a sum of widening multiplies
const char *check_pmaddwd =
(use_avx2 && w >= 4) ? "vpmaddwd" : "pmaddwd";
check(check_pmaddwd, 2 * w, i32(i16_1) * 3 + i32(i16_2) * 4);
check(check_pmaddwd, 2 * w, i32(i16_1) * 3 - i32(i16_2) * 4);
// And also for dot-products
RDom r4(0, 4);
check(check_pmaddwd, 2 * w, sum(i32(in_i16(x * 4 + r4)) * in_i16(x * 4 + r4 + 32)));
check(check_pmaddwd, 2 * w, i32(in_i16(x * 2)) + in_i16(x * 2 + 1));
// Also generate for widening_mul
check(check_pmaddwd, 2 * w, i32(i16_1) * i32(i16_2));
}
// llvm doesn't distinguish between signed and unsigned multiplies
// check("pmuldq", 4, i64(i32_1) * i64(i32_2));
if (use_sse41) {
for (int w = 2; w <= 4; w++) {
if (!use_avx512) {
check("pmuludq", 2 * w, u64(u32_1) * u64(u32_2));
}
check("pmulld", 2 * w, i32_1 * i32_2);
if (!use_avx512) {
// avx512 uses a variety of predicated mov ops instead of blend
check("blend*ps", 2 * w, select(f32_1 > 0.7f, f32_1, f32_2));
check("blend*pd", w, select(f64_1 > cast<double>(0.7f), f64_1, f64_2));
check("pblend*b", 8 * w, select(u8_1 > 7, u8_1, u8_2));
check("pblend*b", 8 * w, select(u8_1 == 7, u8_1, u8_2));
check("pblend*b", 8 * w, select(u8_1 <= 7, i8_1, i8_2));
}
check("pmaxsb", 8 * w, max(i8_1, i8_2));
check("pminsb", 8 * w, min(i8_1, i8_2));
check("pmaxuw", 4 * w, max(u16_1, u16_2));
check("pminuw", 4 * w, min(u16_1, u16_2));
check("pmaxud", 2 * w, max(u32_1, u32_2));
check("pminud", 2 * w, min(u32_1, u32_2));
check("pmaxsd", 2 * w, max(i32_1, i32_2));
check("pminsd", 2 * w, min(i32_1, i32_2));
check("roundps", 2 * w, round(f32_1));
check("roundpd", w, round(f64_1));
check("roundps", 2 * w, floor(f32_1));
check("roundpd", w, floor(f64_1));
check("roundps", 2 * w, ceil(f32_1));
check("roundpd", w, ceil(f64_1));
check("pcmpeqq", w, select(i64_1 == i64_2, i64(1), i64(2)));
check("packusdw", 4 * w, u16_sat(i32_1));
}
}
// SSE 4.2
if (use_sse42) {
check("pcmpgtq", 2, select(i64_1 > i64_2, i64(1), i64(2)));
}
// AVX
if (use_avx) {
check("vsqrtps*ymm", 8, sqrt(f32_1));
check("vsqrtpd*ymm", 4, sqrt(f64_1));
check(use_avx512 ? "vrsqrt*ps" : "vrsqrtps*ymm", 8, fast_inverse_sqrt(f32_1));
check(use_avx512 ? "vrcp*ps" : "vrcpps*ymm", 8, fast_inverse(f32_1));
#if 0
// Not implemented in the front end.
check("vandnps", 8, bool1 & (!bool2));
check("vandps", 8, bool1 & bool2);
check("vorps", 8, bool1 | bool2);
check("vxorps", 8, bool1 ^ bool2);
#endif
check("vaddps*ymm", 8, f32_1 + f32_2);
check("vaddpd*ymm", 4, f64_1 + f64_2);
check("vmulps*ymm", 8, f32_1 * f32_2);
check("vmulpd*ymm", 4, f64_1 * f64_2);
check("vsubps*ymm", 8, f32_1 - f32_2);
check("vsubpd*ymm", 4, f64_1 - f64_2);
// LLVM no longer generates division instruction when fast-math is on
// check("vdivps", 8, f32_1 / f32_2);
// check("vdivpd", 4, f64_1 / f64_2);
check("vminps*ymm", 8, min(f32_1, f32_2));
check("vminpd*ymm", 4, min(f64_1, f64_2));
check("vmaxps*ymm", 8, max(f32_1, f32_2));
check("vmaxpd*ymm", 4, max(f64_1, f64_2));
check("vroundps*ymm", 8, round(f32_1));
check("vroundpd*ymm", 4, round(f64_1));
check("vcmpeqpd*ymm", 4, select(f64_1 == f64_2, 1.0f, 2.0f));
// check("vcmpneqpd", 4, select(f64_1 != f64_2, 1.0f, 2.0f));
// check("vcmplepd", 4, select(f64_1 <= f64_2, 1.0f, 2.0f));
check("vcmpltpd*ymm", 4, select(f64_1 < f64_2, 1.0f, 2.0f));
check("vcmpeqps*ymm", 8, select(f32_1 == f32_2, 1.0f, 2.0f));
// check("vcmpneqps", 8, select(f32_1 != f32_2, 1.0f, 2.0f));
// check("vcmpleps", 8, select(f32_1 <= f32_2, 1.0f, 2.0f));
check("vcmpltps*ymm", 8, select(f32_1 < f32_2, 1.0f, 2.0f));
// avx512 can do predicated mov ops instead of blends
check(use_avx512 ? "vmov*%k" : "vblend*ps*ymm", 8, select(f32_1 > 0.7f, f32_1, f32_2));
check(use_avx512 ? "vmov*%k" : "vblend*pd*ymm", 4, select(f64_1 > cast<double>(0.7f), f64_1, f64_2));
check("vcvttps2dq*ymm", 8, i32(f32_1));
check("vcvtdq2ps*ymm", 8, f32(i32_1));
check(use_avx512 ? "vcvttpd2dq*ymm" : "vcvttpd2dq*xmm", 8, i32(f64_1));
check(use_avx512 ? "vcvtdq2pd*zmm" : "vcvtdq2pd*ymm", 8, f64(i32_1));
check(use_avx512 ? "vcvtps2pd*zmm" : "vcvtps2pd*ymm", 8, f64(f32_1));
check(use_avx512 ? "vcvtpd2ps*ymm" : "vcvtpd2ps*xmm", 8, f32(f64_1));
// Newer llvms will just vpshufd straight from memory for reversed loads
// check("vperm", 8, in_f32(100-x));
}
// AVX 2
if (use_avx2) {
auto check_x86_fixed_point = [&](const std::string &suffix, const int m) {
check("vpaddb*" + suffix, 32 * m, u8_1 + u8_2);
check("vpsubb*" + suffix, 32 * m, u8_1 - u8_2);
check("vpaddsb*" + suffix, 32 * m, i8_sat(i16(i8_1) + i16(i8_2)));
check("vpsubsb*" + suffix, 32 * m, i8_sat(i16(i8_1) - i16(i8_2)));
check("vpaddusb*" + suffix, 32 * m, u8(min(u16(u8_1) + u16(u8_2), max_u8)));
check("vpsubusb*" + suffix, 32 * m, u8(max(i16(u8_1) - i16(u8_2), 0)));
check("vpaddw*" + suffix, 16 * m, u16_1 + u16_2);
check("vpsubw*" + suffix, 16 * m, u16_1 - u16_2);
check("vpaddsw*" + suffix, 16 * m, i16_sat(i32(i16_1) + i32(i16_2)));
check("vpsubsw*" + suffix, 16 * m, i16_sat(i32(i16_1) - i32(i16_2)));
check("vpaddusw*" + suffix, 16 * m, u16(min(u32(u16_1) + u32(u16_2), max_u16)));
check("vpsubusw*" + suffix, 16 * m, u16(max(i32(u16_1) - i32(u16_2), 0)));
check("vpaddd*" + suffix, 8 * m, i32_1 + i32_2);
check("vpsubd*" + suffix, 8 * m, i32_1 - i32_2);
check("vpmulhw*" + suffix, 16 * m, i16((i32(i16_1) * i32(i16_2)) / (256 * 256)));
check("vpmulhw*" + suffix, 16 * m, i16((i32(i16_1) * i32(i16_2)) >> cast<unsigned>(16)));
check("vpmulhw*" + suffix, 16 * m, i16((i32(i16_1) * i32(i16_2)) >> cast<int>(16)));
check("vpmulhw*" + suffix, 16 * m, i16((i32(i16_1) * i32(i16_2)) << cast<int>(-16)));
check("vpmullw*" + suffix, 16 * m, i16_1 * i16_2);
check("vpmulhrsw*" + suffix, 16 * m, i16((((i32(i16_1) * i32(i16_2)) + 16384)) / 32768));
check("vpmulhrsw*" + suffix, 16 * m, i16_sat((((i32(i16_1) * i32(i16_2)) + 16384)) / 32768));
check("vpcmp*b*" + suffix, 32 * m, select(u8_1 == u8_2, u8(1), u8(2)));
check("vpcmp*b*" + suffix, 32 * m, select(u8_1 > u8_2, u8(1), u8(2)));
check("vpcmp*w*" + suffix, 16 * m, select(u16_1 == u16_2, u16(1), u16(2)));
check("vpcmp*w*" + suffix, 16 * m, select(u16_1 > u16_2, u16(1), u16(2)));
check("vpcmp*d*" + suffix, 8 * m, select(u32_1 == u32_2, u32(1), u32(2)));
check("vpcmp*d*" + suffix, 8 * m, select(u32_1 > u32_2, u32(1), u32(2)));
check("vpavgb*" + suffix, 32 * m, u8((u16(u8_1) + u16(u8_2) + 1) / 2));
check("vpavgw*" + suffix, 16 * m, u16((u32(u16_1) + u32(u16_2) + 1) / 2));
check("vpmaxsw*" + suffix, 16 * m, max(i16_1, i16_2));
check("vpminsw*" + suffix, 16 * m, min(i16_1, i16_2));
check("vpmaxub*" + suffix, 32 * m, max(u8_1, u8_2));
check("vpminub*" + suffix, 32 * m, min(u8_1, u8_2));
check("vpabsb*" + suffix, 32 * m, abs(i8_1));
check("vpabsw*" + suffix, 16 * m, abs(i16_1));
check("vpabsd*" + suffix, 8 * m, abs(i32_1));
check("vpsubusb*" + suffix, 32 * m, absd(u8_1, u8_2));
check("vpsubusw*" + suffix, 16 * m, absd(u16_1, u16_2));
check("vpmaxsb*" + suffix, 32 * m, absd(i8_1, i8_2));
check("vpmaxsw*" + suffix, 16 * m, absd(i16_1, i16_2));
check("vpmaxsd*" + suffix, 8 * m, absd(i32_1, i32_2));
};
check_x86_fixed_point("ymm", 1);
if (use_avx512) {
check_x86_fixed_point("zmm", 2);
}
if (target.has_feature(Target::F16C)) {
check("vcvtps2ph", 8, cast(Float(16), f32_1));
check("vcvtph2ps", 8, cast(Float(32), f16_1));
}
check(use_avx512 ? "vpaddq*zmm" : "vpaddq*ymm", 8, i64_1 + i64_2);
check(use_avx512 ? "vpsubq*zmm" : "vpsubq*ymm", 8, i64_1 - i64_2);
check(use_avx512 ? "vpmullq" : "vpmuludq*ymm", 8, u64_1 * u64_2);
// llvm doesn't distinguish between signed and unsigned multiplies
// check("vpmuldq", 8, i64(i32_1) * i64(i32_2));
if (!use_avx512) {
// AVX512 uses widening loads instead
check("vpmuludq*ymm", 8, u64(u32_1) * u64(u32_2));
}
check("vpmulld*ymm", 8, i32_1 * i32_2);
if (use_avx512) {
// avx512 does vector blends with a mov + predicate register
check("vmov*%k", 32, select(u8_1 > 7, u8_1, u8_2));
} else {
check("vpblend*b*ymm", 32, select(u8_1 > 7, u8_1, u8_2));
}
if (use_avx512) {
check("vpmaxsb*zmm", 64, max(i8_1, i8_2));
check("vpminsb*zmm", 64, min(i8_1, i8_2));
check("vpmaxuw*zmm", 32, max(u16_1, u16_2));
check("vpminuw*zmm", 32, min(u16_1, u16_2));
check("vpmaxud*zmm", 16, max(u32_1, u32_2));
check("vpminud*zmm", 16, min(u32_1, u32_2));
check("vpmaxsd*zmm", 16, max(i32_1, i32_2));
check("vpminsd*zmm", 16, min(i32_1, i32_2));
}
check("vpmaxsb*ymm", 32, max(i8_1, i8_2));
check("vpminsb*ymm", 32, min(i8_1, i8_2));
check("vpmaxuw*ymm", 16, max(u16_1, u16_2));
check("vpminuw*ymm", 16, min(u16_1, u16_2));
check("vpmaxud*ymm", 8, max(u32_1, u32_2));
check("vpminud*ymm", 8, min(u32_1, u32_2));
check("vpmaxsd*ymm", 8, max(i32_1, i32_2));
check("vpminsd*ymm", 8, min(i32_1, i32_2));
check("vpcmpeqq*ymm", 4, select(i64_1 == i64_2, i64(1), i64(2)));
check("vpackusdw*ymm", 16, u16(clamp(i32_1, 0, max_u16)));
check("vpcmpgtq*ymm", 4, select(i64_1 > i64_2, i64(1), i64(2)));
// Sum-of-absolute-difference ops
for (int w : {4, 8}) {
const int f = 8; // reduction factor.
RDom r(0, f);
check("vpsadbw", w, sum(u64(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("vpsadbw", w, sum(u32(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("vpsadbw", w, sum(u16(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("vpsadbw", w, sum(i64(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("vpsadbw", w, sum(i32(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
check("vpsadbw", w, sum(i16(absd(in_u8(f * x + r), in_u8(f * x + r + 32)))));
}
}
if (use_avx512) {
#if 0
// Not yet implemented
check("vrangeps", 16, clamp(f32_1, 3.0f, 9.0f));
check("vrangepd", 8, clamp(f64_1, f64(3), f64(9)));
check("vreduceps", 16, f32_1 - floor(f32_1));
check("vreduceps", 16, f32_1 - floor(f32_1*8)/8);
check("vreduceps", 16, f32_1 - trunc(f32_1));
check("vreduceps", 16, f32_1 - trunc(f32_1*8)/8);
check("vreducepd", 8, f64_1 - floor(f64_1));
check("vreducepd", 8, f64_1 - floor(f64_1*8)/8);
check("vreducepd", 8, f64_1 - trunc(f64_1));
check("vreducepd", 8, f64_1 - trunc(f64_1*8)/8);
#endif
}
if (use_avx512) {
check("vpabsq", 8, abs(i64_1));
check("vpmaxuq", 8, max(u64_1, u64_2));
check("vpminuq", 8, min(u64_1, u64_2));
check("vpmaxsq", 8, max(i64_1, i64_2));
check("vpminsq", 8, min(i64_1, i64_2));
}
if (use_avx_vnni) {
// avx_vnni is not part of the AVX-512 suite, it does not require
// AVX-512F and can be implemented independently. avx_vnni adds
// instructions which can only operate on 128- or 256-bit vectors.
{
// 16 bit, 2 element dot product
RDom r(0, 2);
check("vpdpwssd*ymm", 8, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
check("vpdpwssd*xmm", 4, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
}
{
// 8 bit, 4 element dot product
RDom r(0, 4);
check("vpdpbusd*ymm", 8, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusd*ymm", 8, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
check("vpdpbusd*xmm", 4, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusd*xmm", 4, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
}
{
// 16 bit, 2 element saturaing dot product
RDom r(0, 2);
check("vpdpwssds*ymm", 8, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
check("vpdpwssds*xmm", 4, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
}
{
// 8 bit, 4 element saturating dot product
RDom r(0, 4);
check("vpdpbusds*ymm", 8, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusds*ymm", 8, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
check("vpdpbusds*xmm", 4, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusds*xmm", 4, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
}
}
if (use_avx512_vnni) {
// For our targets, avx512_vnni implies avx512_bf16 and avx512vl.
// if avx512vl flag is set, avx512_bf16 and avx512_vnni can support
// 128-bit and 256-bit vectors as well.
// Disabled due to https://github.com/halide/Halide/issues/7219
/*
check("vcvtne2ps2bf16*zmm", 32, cast(BFloat(16), f32_1));
check("vcvtneps2bf16*ymm", 16, cast(BFloat(16), f32_1));
check("vcvtneps2bf16*xmm", 8, cast(BFloat(16), f32_1));
check("vcvtneps2bf16*xmm", 4, cast(BFloat(16), f32_1));
*/
{
// 16 bit, 2 element dot product
RDom r(0, 2);
check("vdpbf16ps*zmm", 16, sum(f32(in_bf16(2 * x + r)) * in_bf16(2 * x + r + 32)));
check("vpdpwssd*zmm", 16, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
check("vdpbf16ps*ymm", 8, sum(f32(in_bf16(2 * x + r)) * in_bf16(2 * x + r + 32)));
check("vdpbf16ps*xmm", 4, sum(f32(in_bf16(2 * x + r)) * in_bf16(2 * x + r + 32)));
check("vpdpwssd*ymm", 8, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
check("vpdpwssd*xmm", 4, sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
}
{
// 8 bit, 4 element dot product
RDom r(0, 4);
check("vpdpbusd*zmm", 16, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusd*zmm", 16, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
check("vpdpbusd*ymm", 8, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusd*ymm", 8, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
check("vpdpbusd*xmm", 4, sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusd*xmm", 4, sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
}
{
// 16 bit, 2 element saturaing dot product
RDom r(0, 2);
check("vpdpwssds*zmm", 16, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
check("vpdpwssds*ymm", 8, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
check("vpdpwssds*xmm", 4, saturating_sum(i32(in_i16(2 * x + r)) * in_i16(2 * x + r + 32)));
}
{
// 8 bit, 4 element saturating dot product
RDom r(0, 4);
check("vpdpbusds*zmm", 16, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusds*zmm", 16, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
check("vpdpbusds*ymm", 8, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusds*ymm", 8, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
check("vpdpbusds*xmm", 4, saturating_sum(i32(in_u8(4 * x + r)) * in_i8(4 * x + r + 32)));
check("vpdpbusds*xmm", 4, saturating_sum(i32(in_i8(4 * x + r)) * in_u8(4 * x + r + 32)));
}
}
}
private:
bool use_avx2{false};
bool use_avx512{false};
bool use_avx512_vnni{false};
bool use_avx_vnni{false};
bool use_avx{false};
bool use_sse41{false};
bool use_sse42{false};
bool use_ssse3{false};
const Var x{"x"}, y{"y"};
};
} // namespace
int main(int argc, char **argv) {
return SimdOpCheckTest::main<SimdOpCheckX86>(
argc, argv,
{
// IMPORTANT:
// When adding new targets here, make sure to also update
// can_run_code in simd_op_check.h to include any new features used.
Target("x86-32-linux"),
Target("x86-32-linux-sse41"),
// Always turn on f16c when using avx. Sandy Bridge had avx without
// f16c, but f16c is orthogonal to everything else, so there's no
// real reason to test avx without it.
Target("x86-64-linux-sse41-avx-f16c-fma"),
Target("x86-64-linux-sse41-avx-f16c-fma-avx2"),
// See above: don't test avx512 without extra features, the test
// isn't yet set up to test it properly.
// Target("x86-64-linux-sse41-avx-avx2-avx512"),
// Target("x86-64-linux-sse41-avx-avx2-avx512-avx512_knl"),
Target("x86-64-linux-sse41-avx-f16c-fma-avx2-avx512-avx512_skylake"),
Target("x86-64-linux-sse41-avx-f16c-fma-avx2-avx512-avx512_skylake-avx512_cannonlake"),
Target("x86-64-linux-sse41-avx-f16c-fma-avx2-avx512-avx512_skylake-avx512_cannonlake-avx512_zen4"),
Target("x86-64-linux-sse41-avx-f16c-fma-avx2-avxvnni-avx512-avx512_skylake-avx512_cannonlake-avx512_zen4-avx512_zen5"),
Target("x86-64-linux-sse41-avx-f16c-fma-avx2-avxvnni-avx512-avx512_skylake-avx512_cannonlake-avx512_zen4-avx512_sapphirerapids"),
// Can be enabled when AVX10 and APX support are stable in LLVM.
// Target("x86-64-linux-avx10_1-vector_bits_256-x86apx"),
});
}
|