File: sliding_window.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (398 lines) | stat: -rw-r--r-- 11,747 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#include "Halide.h"
#include <stdio.h>

using namespace Halide;

int count = 0;
extern "C" HALIDE_EXPORT_SYMBOL int call_counter(int x, int y) {
    count++;
    return 0;
}
HalideExtern_2(int, call_counter, int, int);

extern "C" void *my_malloc(JITUserContext *, size_t x) {
    printf("Malloc wasn't supposed to be called!\n");
    exit(1);
}

int main(int argc, char **argv) {
    Var x, y;

    if (get_jit_target_from_environment().arch == Target::WebAssembly) {
        printf("[SKIP] WebAssembly JIT does not support custom allocators.\n");
        return 0;
    }

    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        count = 0;
        Func f, g;

        f(x) = call_counter(x, 0);
        g(x) = f(x) + f(x - 1);

        f.store_root().compute_at(g, x).store_in(store_in);

        // Test that sliding window works when specializing.
        g.specialize(g.output_buffer().dim(0).min() == 0);

        Buffer<int> im = g.realize({100});

        // f should be able to tell that it only needs to compute each value once
        if (count != 101) {
            printf("f was called %d times instead of %d times\n", count, 101);
            return 1;
        }
    }

    // Try two producers used by the same consumer.
    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        count = 0;
        Func f, g, h;

        f(x) = call_counter(2 * x + 0, 0);
        g(x) = call_counter(2 * x + 1, 0);
        h(x) = f(x) + f(x - 1) + g(x) + g(x - 1);

        f.store_root().compute_at(h, x).store_in(store_in);
        g.store_root().compute_at(h, x).store_in(store_in);

        Buffer<int> im = h.realize({100});
        if (count != 202) {
            printf("f was called %d times instead of %d times\n", count, 202);
            return 1;
        }
    }

    // Try a sequence of two sliding windows.
    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        count = 0;
        Func f, g, h;

        f(x) = call_counter(2 * x + 0, 0);
        g(x) = f(x) + f(x - 1);
        h(x) = g(x) + g(x - 1);

        f.store_root().compute_at(h, x).store_in(store_in);
        g.store_root().compute_at(h, x).store_in(store_in);

        Buffer<int> im = h.realize({100});
        int correct = store_in == MemoryType::Register ? 103 : 102;
        if (count != correct) {
            printf("f was called %d times instead of %d times\n", count, correct);
            return 1;
        }
    }

    // Try again where there's a containing stage
    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        count = 0;
        Func f, g, h;
        f(x) = call_counter(x, 0);
        g(x) = f(x) + f(x - 1);
        h(x) = g(x);

        f.store_root().compute_at(g, x).store_in(store_in);
        g.compute_at(h, x);

        Buffer<int> im = h.realize({100});
        if (count != 101) {
            printf("f was called %d times instead of %d times\n", count, 101);
            return 1;
        }
    }

    // Add an inner vectorized dimension.
    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        count = 0;
        Func f, g, h;
        Var c;
        f(x, c) = call_counter(x, c);
        g(x, c) = f(x + 1, c) - f(x, c);
        h(x, c) = g(x, c);

        f.store_root()
            .compute_at(h, x)
            .store_in(store_in)
            .reorder(c, x)
            .reorder_storage(c, x)
            .bound(c, 0, 4)
            .vectorize(c);

        g.compute_at(h, x);

        h.reorder(c, x).reorder_storage(c, x).bound(c, 0, 4).vectorize(c);

        Buffer<int> im = h.realize({100, 4});
        if (count != 404) {
            printf("f was called %d times instead of %d times\n", count, 404);
            return 1;
        }
    }

    // Now try with a reduction
    {
        count = 0;
        RDom r(0, 100);
        Func f, g;

        f(x, y) = 0;
        f(r, y) = call_counter(r, y);
        f.store_root().compute_at(g, y);

        g(x, y) = f(x, y) + f(x, y - 1);

        Buffer<int> im = g.realize({10, 10});

        // For each value of y, f should be evaluated over (0 .. 100) in
        // x, and (y .. y-1) in y. Sliding window optimization means that
        // we can skip the y-1 case in all but the first iteration.
        if (count != 100 * 11) {
            printf("f was called %d times instead of %d times\n", count, 100 * 11);
            return 1;
        }
    }

    {
        // Now try sliding over multiple dimensions at once
        Func f, g;

        count = 0;
        f(x, y) = call_counter(x, y);
        g(x, y) = f(x - 1, y) + f(x, y) + f(x, y - 1);
        f.store_root().compute_at(g, x);

        Buffer<int> im = g.realize({10, 10});

        if (count != 11 * 11) {
            printf("f was called %d times instead of %d times\n", count, 11 * 11);
            return 1;
        }
    }

    {
        Func f, g;

        // Now a trickier example. In order for this to work, Halide would have to slide diagonally. We don't handle this.
        count = 0;
        f(x, y) = call_counter(x, y);
        // When x was two smaller the second term was computed. When y was two smaller the third term was computed.
        g(x, y) = f(x + y, x - y) + f((x - 2) + y, (x - 2) - y) + f(x + (y - 2), x - (y - 2));
        f.store_root().compute_at(g, x);

        Buffer<int> im = g.realize({10, 10});
        if (count != 1500) {
            printf("f was called %d times instead of %d times\n", count, 1500);
            return 1;
        }
    }

    {
        // Now make sure Halide folds the example in Func.h down to a stack allocation
        Func f, g;
        f(x, y) = x * y;
        g(x, y) = f(x, y) + f(x + 1, y) + f(x, y + 1) + f(x + 1, y + 1);
        f.store_at(g, y).compute_at(g, x);
        g.jit_handlers().custom_malloc = my_malloc;
        Buffer<int> im = g.realize({10, 10});
    }

    {
        // Sliding where the footprint is actually fixed over the loop
        // var. Everything in the producer should be computed in the
        // first iteration.
        Func f, g;

        f(x) = call_counter(x, 0);
        g(x) = f(0) + f(5);

        f.store_root().compute_at(g, x);

        count = 0;
        Buffer<int> im = g.realize({100});

        // f should be able to tell that it only needs to compute each value once
        if (count != 6) {
            printf("f was called %d times instead of %d times\n", count, 6);
            return 1;
        }
    }

    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        // Sliding where we only need a new value every third iteration of the consumer.
        Func f, g;

        f(x) = call_counter(x, 0);
        g(x) = f(x / 3);

        f.store_root().compute_at(g, x).store_in(store_in);

        count = 0;
        Buffer<int> im = g.realize({100});

        // f should be able to tell that it only needs to compute each value once
        if (count != 34) {
            printf("f was called %d times instead of %d times\n", count, 34);
            return 1;
        }
    }

    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        // Sliding where we only need a new value every third iteration of the consumer.
        // This test checks that we don't ask for excessive bounds.
        ImageParam f(Int(32), 1);
        Func g;

        g(x) = f(x / 3);

        Var xo;
        g.split(x, xo, x, 10);
        f.in().store_at(g, xo).compute_at(g, x).store_in(store_in);

        Buffer<int> buf(33);
        f.set(buf);

        Buffer<int> im = g.realize({98});
    }

    for (auto store_in : {MemoryType::Heap, MemoryType::Register}) {
        // Sliding with an unrolled producer
        Var x, xi;
        Func f, g;

        f(x) = call_counter(x, 0) + x * x;
        g(x) = f(x) + f(x - 1);

        g.split(x, x, xi, 10);
        f.store_root().compute_at(g, x).store_in(store_in).unroll(x);

        count = 0;
        Buffer<int> im = g.realize({100});

        if (count != 101) {
            printf("f was called %d times instead of %d times\n", count, 101);
            return 1;
        }
    }

    {
        // Sliding with a vectorized producer and consumer.
        count = 0;
        Func f, g;
        f(x) = call_counter(x, 0);
        g(x) = f(x + 1) + f(x - 1);

        f.store_root().compute_at(g, x).vectorize(x, 4);
        g.vectorize(x, 4);

        Buffer<int> im = g.realize({100});
        if (count != 104) {
            printf("f was called %d times instead of %d times\n", count, 104);
            return 1;
        }
    }

    {
        // Sliding with a vectorized producer and consumer, trying to rotate
        // cleanly in registers.
        count = 0;
        Func f, g;
        f(x) = call_counter(x, 0);
        g(x) = f(x + 1) + f(x - 1);

        // This currently requires a trick to get everything to be aligned
        // nicely. This exploits the fact that ShiftInwards splits are
        // aligned to the end of the original loop (and extending before the
        // min if necessary).
        Var xi("xi");
        f.store_root().compute_at(g, x).store_in(MemoryType::Register).split(x, x, xi, 8).vectorize(xi, 4).unroll(xi);
        g.vectorize(x, 4, TailStrategy::RoundUp);

        Buffer<int> im = g.realize({100});
        if (count != 102) {
            printf("f was called %d times instead of %d times\n", count, 102);
            return 1;
        }
    }

    {
        // A sequence of stencils, all computed at the output.
        count = 0;
        Func f, g, h, u, v;
        f(x, y) = call_counter(x, y);
        g(x, y) = f(x, y - 1) + f(x, y + 1);
        h(x, y) = g(x - 1, y) + g(x + 1, y);
        u(x, y) = h(x, y - 1) + h(x, y + 1);
        v(x, y) = u(x - 1, y) + u(x + 1, y);

        u.compute_at(v, y);
        h.store_root().compute_at(v, y);
        g.store_root().compute_at(v, y);
        f.store_root().compute_at(v, y);

        v.realize({10, 10});
        if (count != 14 * 14) {
            printf("f was called %d times instead of %d times\n", count, 14 * 14);
            return 1;
        }
    }

    {
        // A sequence of stencils, sliding computed at the output.
        count = 0;
        Func f, g, h, u, v;
        f(x, y) = call_counter(x, y);
        g(x, y) = f(x, y - 1) + f(x, y + 1);
        h(x, y) = g(x - 1, y) + g(x + 1, y);
        u(x, y) = h(x, y - 1) + h(x, y + 1);
        v(x, y) = u(x - 1, y) + u(x + 1, y);

        u.compute_at(v, y);
        h.store_root().compute_at(v, y);
        g.compute_at(h, y);
        f.store_root().compute_at(v, y);

        v.realize({10, 10});
        if (count != 14 * 14) {
            printf("f was called %d times instead of %d times\n", count, 14 * 14);
            return 1;
        }
    }

    {
        // Sliding a func that has a boundary condition before the beginning
        // of the loop. This needs an explicit warmup before we start sliding.
        count = 0;
        Func f, g;
        f(x) = call_counter(x, 0);
        g(x) = f(max(x, 3));

        f.store_root().compute_at(g, x);

        g.realize({10});
        if (count != 7) {
            printf("f was called %d times instead of %d times\n", count, 7);
            return 1;
        }
    }

    {
        // Sliding a func that has a boundary condition on both sides.
        count = 0;
        Func f, g, h;
        f(x) = call_counter(x, 0);
        g(x) = f(clamp(x, 0, 9));
        h(x) = g(x - 1) + g(x + 1);

        f.store_root().compute_at(h, x);
        g.store_root().compute_at(h, x);

        h.realize({10});
        if (count != 10) {
            printf("f was called %d times instead of %d times\n", count, 10);
            return 1;
        }
    }

    printf("Success!\n");
    return 0;
}