1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
#include "Halide.h"
#include <stdio.h>
#include <set>
using namespace Halide;
// Override Halide's malloc and free
const int tolerance = 3 * sizeof(int);
std::set<size_t> custom_malloc_sizes;
void *my_malloc(JITUserContext *user_context, size_t x) {
custom_malloc_sizes.insert(x);
void *orig = malloc(x + 32);
void *ptr = (void *)((((size_t)orig + 32) >> 5) << 5);
((void **)ptr)[-1] = orig;
return ptr;
}
void my_free(JITUserContext *user_context, void *ptr) {
free(((void **)ptr)[-1]);
}
bool check_expected_malloc(size_t expected) {
for (size_t i : custom_malloc_sizes) {
if (std::abs((int)i - (int)expected) <= tolerance) {
return true;
}
}
printf("Expected an allocation of size %d (tolerance %d). Got instead:\n", (int)expected, tolerance);
for (size_t i : custom_malloc_sizes) {
printf(" %d\n", (int)i);
}
return false;
}
bool check_expected_mallocs(const std::vector<size_t> &expected) {
for (size_t i : expected) {
if (!check_expected_malloc(i)) {
return false;
}
}
return true;
}
// An extern stage that copies input -> output
extern "C" HALIDE_EXPORT_SYMBOL int simple_buffer_copy(halide_buffer_t *in, halide_buffer_t *out) {
if (in->is_bounds_query()) {
memcpy(in->dim, out->dim, out->dimensions * sizeof(halide_dimension_t));
} else {
Halide::Runtime::Buffer<void>(*out).copy_from(Halide::Runtime::Buffer<void>(*in));
}
return 0;
}
// An extern stage accesses the input in a non-monotonic way in the y dimension.
extern "C" HALIDE_EXPORT_SYMBOL int zigzag_buffer_copy(halide_buffer_t *in, halide_buffer_t *out) {
if (in->is_bounds_query()) {
memcpy(in->dim, out->dim, out->dimensions * sizeof(halide_dimension_t));
// An intentionally nasty mapping from y coords of the output to y coords of the input:
auto coord_map =
[](int y) {
// Reverse the bottom 8 bits
int new_y = y & ~255;
for (int i = 0; i < 8; i++) {
if (y & (7 - i)) {
new_y |= (1 << i);
}
}
return new_y;
};
// Just manually take a min/max over all scanlines of the output
int in_y_min = coord_map(out->dim[1].min);
int in_y_max = in_y_min;
for (int out_y = out->dim[1].min + 1; out_y < out->dim[1].min + out->dim[1].extent; out_y++) {
int in_y = coord_map(out_y);
in_y_min = std::min(in_y_min, in_y);
in_y_max = std::max(in_y_max, in_y);
}
in->dim[1].min = in_y_min;
in->dim[1].extent = in_y_max - in_y_min + 1;
} else {
// This extern stage is only used to see if it produces an
// expected bounds error, so just fill it with a sentinel value.
Halide::Runtime::Buffer<int>(*out).fill(99);
}
return 0;
}
bool error_occurred;
void expected_error(JITUserContext *, const char *msg) {
// Emitting "error.*:" to stdout or stderr will cause CMake to report the
// test as a failure on Windows, regardless of error code returned,
// hence the abbreviation to "err".
printf("Expected err: %s\n", msg);
error_occurred = true;
}
void realize_and_expect_error(Func f, int w, int h) {
error_occurred = false;
f.jit_handlers().custom_error = expected_error;
f.realize({w, h});
if (!error_occurred) {
printf("Expected an error!\n");
abort();
}
}
int main(int argc, char **argv) {
if (get_jit_target_from_environment().arch == Target::WebAssembly) {
printf("[SKIP] WebAssembly JIT does not support custom allocators.\n");
return 0;
}
Var x, y, c;
// Every allocation in this test wants to go through the custom allocator above.
JITHandlers handlers;
handlers.custom_malloc = my_malloc;
handlers.custom_free = my_free;
Internal::JITSharedRuntime::set_default_handlers(handlers);
{
Func f, g;
f(x, y, c) = x;
g(x, y, c) = f(x - 1, y + 1, c) + f(x, y - 1, c);
f.store_root().compute_at(g, x);
// Should be able to fold storage in y and c
Buffer<int> im = g.realize({100, 1000, 3});
size_t expected_size = 101 * 4 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
}
{
Func f, g;
f(x, y, c) = x;
g(x, y, c) = f(x - 1, y + 1, c) + f(x, y - 1, c);
f.store_root().compute_at(g, x);
g.specialize(g.output_buffer().width() > 4).vectorize(x, 4);
// Make sure that storage folding doesn't happen if there are
// multiple producers of the folded buffer.
Buffer<int> im = g.realize({100, 1000, 3});
size_t expected_size = 101 * 1002 * 3 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
}
{
Func f, g;
f(x, y) = x;
g(x, y) = f(x - 1, y + 1) + f(x, y - 1);
f.store_root().compute_at(g, y).fold_storage(y, 3);
g.specialize(g.output_buffer().width() > 4).vectorize(x, 4);
// Make sure that explict storage folding happens, even if
// there are multiple producers of the folded buffer. Note the
// automatic storage folding refused to fold this (the case
// above).
Buffer<int> im = g.realize({100, 1000});
size_t expected_size = 101 * 3 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
}
{
custom_malloc_sizes.clear();
Func f, g;
g(x, y) = x * y;
f(x, y) = g(2 * x, 2 * y) + g(2 * x + 1, 2 * y + 1);
// Each instance of f uses a non-overlapping 2x2 box of
// g. Should be able to fold storage of g down to a stack
// allocation.
g.compute_at(f, x).store_root();
Buffer<int> im = f.realize({1000, 1000});
if (!custom_malloc_sizes.empty()) {
printf("There should not have been a heap allocation\n");
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
int correct = (2 * x) * (2 * y) + (2 * x + 1) * (2 * y + 1);
if (im(x, y) != correct) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct);
return 1;
}
}
}
}
{
custom_malloc_sizes.clear();
Func f, g;
g(x, y) = x * y;
f(x, y) = g(x, 2 * y) + g(x + 3, 2 * y + 1);
// Each instance of f uses a non-overlapping 2-scanline slice
// of g in y, and is a stencil over x. Should be able to fold
// both x and y.
g.compute_at(f, x).store_root();
Buffer<int> im = f.realize({1000, 1000});
if (!custom_malloc_sizes.empty()) {
printf("There should not have been a heap allocation\n");
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
int correct = x * (2 * y) + (x + 3) * (2 * y + 1);
if (im(x, y) != correct) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct);
return 1;
}
}
}
}
{
custom_malloc_sizes.clear();
Func f, g;
g(x, y) = x * y;
f(x, y) = g(2 * x, y) + g(2 * x + 1, y + 3);
// Each instance of f uses a non-overlapping 2-scanline slice
// of g in x, and is a stencil over y. We can't fold in x due
// to the stencil in y. We need to keep around entire
// scanlines.
g.compute_at(f, x).store_root();
Buffer<int> im = f.realize({1000, 1000});
size_t expected_size = 2 * 1000 * 4 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
int correct = (2 * x) * y + (2 * x + 1) * (y + 3);
if (im(x, y) != correct) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct);
return 1;
}
}
}
}
{
custom_malloc_sizes.clear();
Func f, g;
g(x, y) = x * y;
f(x, y) = g(x, y);
Var yo, yi;
f.bound(y, 0, (f.output_buffer().height() / 8) * 8).split(y, yo, yi, 8);
g.compute_at(f, yo).store_root();
// The split logic shouldn't interfere with the ability to
// fold f down to an 8-scanline allocation, but it's only
// correct to fold if we know the output height is a multiple
// of the split factor.
Buffer<int> im = f.realize({1000, 1000});
size_t expected_size = 1000 * 8 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
int correct = x * y;
if (im(x, y) != correct) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct);
return 1;
}
}
}
}
{
custom_malloc_sizes.clear();
Func f, g;
g(x, y) = x * y;
f(x, y) = g(2 * x, y) + g(2 * x + 1, y + 2);
// This is the same test as the above, except the stencil
// requires 3 rows, of g, not 4. Test explicit storage folding
// by forcing it to fold over 3 elements. Automatic storage
// folding would prefer to fold by 4 elements to make modular
// arithmetic cheaper, but folding by 3 is valid and supported
// (e.g. if memory usage is a concern.)
g.compute_at(f, x).store_root().fold_storage(y, 3);
Buffer<int> im = f.realize({1000, 1000});
size_t expected_size = 2 * 1000 * 3 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
int correct = (2 * x) * y + (2 * x + 1) * (y + 2);
if (im(x, y) != correct) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct);
return 1;
}
}
}
}
{
custom_malloc_sizes.clear();
Func f, g;
// This is tricky due to upsampling.
g(x, y) = x * y;
f(x, y) = g(x, y / 2) + g(x, y / 2 + 1);
g.compute_at(f, x).store_root();
Buffer<int> im = f.realize({1000, 1000});
size_t expected_size = 1000 * 2 * sizeof(int);
if (!check_expected_mallocs({expected_size})) {
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
int correct = (x) * (y / 2) + (x) * (y / 2 + 1);
if (im(x, y) != correct) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct);
return 1;
}
}
}
}
{
custom_malloc_sizes.clear();
Func f, g, h;
// Two stages of upsampling is even trickier.
h(x, y) = x * y;
g(x, y) = h(x, y / 2) + h(x, y / 2 + 1);
f(x, y) = g(x, y / 2) + g(x, y / 2 + 1);
h.compute_at(f, y).store_root().fold_storage(y, 4);
g.compute_at(f, y).store_root().fold_storage(y, 2);
Buffer<int> im = f.realize({1000, 1000});
// Halide allocates one extra scalar, so we account for that.
size_t expected_size_g = 1000 * 4 * sizeof(int) + sizeof(int);
size_t expected_size_h = 1000 * 2 * sizeof(int) + sizeof(int);
if (!check_expected_mallocs({expected_size_g, expected_size_h})) {
return 1;
}
for (int y = 0; y < im.height(); y++) {
for (int x = 0; x < im.width(); x++) {
auto correct_h = [](int x, int y) { return x * y; };
auto correct_g = [=](int x, int y) { return correct_h(x, y / 2) + correct_h(x, y / 2 + 1); };
auto correct_f = [=](int x, int y) { return correct_g(x, y / 2) + correct_g(x, y / 2 + 1); };
if (im(x, y) != correct_f(x, y)) {
printf("im(%d, %d) = %d instead of %d\n", x, y, im(x, y), correct_f(x, y));
return 1;
}
}
}
}
for (bool interleave : {false, true}) {
Func f, g;
f(x, y, c) = x;
g(x, y, c) = f(x - 1, y + 1, c) + f(x, y - 1, c);
f.store_root().compute_at(g, y).fold_storage(y, 3);
if (interleave) {
f.reorder(c, x, y).reorder_storage(c, x, y);
g.reorder(c, x, y).reorder_storage(c, x, y);
}
// Make sure we can explicitly fold something with an outer
// loop.
Buffer<int> im = g.realize({100, 1000, 3});
size_t expected_size;
if (interleave) {
expected_size = 101 * 3 * 3 * sizeof(int);
} else {
expected_size = 101 * 3 * sizeof(int);
}
if (!check_expected_mallocs({expected_size})) {
return 1;
}
}
{
// Fold the storage of the output of an extern stage
Func f, g, h;
Var x, y;
f(x, y) = x + y;
g.define_extern("simple_buffer_copy", {f}, Int(32), 2);
h(x, y) = g(x, y);
f.compute_root();
g.store_root().compute_at(h, y).fold_storage(g.args()[1], 8);
h.compute_root();
Buffer<int> out = h.realize({64, 64});
out.for_each_element([&](int x, int y) {
if (out(x, y) != x + y) {
printf("out(%d, %d) = %d instead of %d\n", x, y, out(x, y), x + y);
abort();
}
});
}
{
// Fold the storage of an input to an extern stage
Func f, g, h;
Var x, y;
f(x, y) = x + y;
g.define_extern("simple_buffer_copy", {f}, Int(32), 2);
h(x, y) = g(x, y);
f.store_root().compute_at(h, y).fold_storage(y, 8);
g.compute_at(h, y);
h.compute_root();
Buffer<int> out = h.realize({64, 64});
out.for_each_element([&](int x, int y) {
if (out(x, y) != x + y) {
printf("out(%d, %d) = %d instead of %d\n", x, y, out(x, y), x + y);
abort();
}
});
}
// Now we check some error cases.
{
// Fold the storage of an input to an extern stage, with a too-small fold factor.
Func f, g, h;
Var x, y;
f(x, y) = x + y;
g.define_extern("simple_buffer_copy", {f}, Int(32), 2);
h(x, y) = g(x, y);
f.store_root().compute_at(h, y).fold_storage(y, 4);
g.compute_at(h, y);
Var yi;
h.compute_root().split(y, y, yi, 8);
realize_and_expect_error(h, 64, 64);
}
{
// Fold the storage of an input to an extern stage, where one
// of the regions required by the extern stage will overlap a
// fold boundary (thanks to ShiftInwards).
Func f, g, h;
Var x, y;
f(x, y) = x + y;
g.define_extern("simple_buffer_copy", {f}, Int(32), 2);
h(x, y) = g(x, y);
f.store_root().compute_at(h, y).fold_storage(y, 4);
g.compute_at(h, y);
Var yi;
h.compute_root().split(y, y, yi, 4);
realize_and_expect_error(h, 64, 7);
}
{
// Fold the storage of an input to an extern stage, where the
// extern stage moves non-monotonically on the input.
Func f, g, h;
Var x, y;
f(x, y) = x + y;
g.define_extern("zigzag_buffer_copy", {f}, Int(32), 2);
h(x, y) = g(x, y);
f.store_root().compute_at(h, y).fold_storage(y, 4);
g.compute_at(h, y);
Var yi;
h.compute_root().split(y, y, yi, 2);
realize_and_expect_error(h, 64, 64);
}
{
// Fold the storage of the output of an extern stage, where
// one of the regions written crosses a fold boundary.
Func f, g, h;
Var x, y;
f(x, y) = x + y;
g.define_extern("simple_buffer_copy", {f}, Int(32), 2);
h(x, y) = g(x, y);
f.compute_root();
g.store_root().compute_at(h, y).fold_storage(g.args()[1], 4);
Var yi;
h.compute_root().split(y, y, yi, 4);
realize_and_expect_error(h, 64, 7);
}
{
// Check a case which used to be problematic
Func input, a, b, c, output;
Var xo, yo, line, chunk;
input(x, y) = x;
a(x, y) = input(x, y);
b(x, y) = select(y % 2 == 0, a(x, y / 2), a(x, y / 2 + 1));
c = lambda(x, y, b(x, y));
output(x, y) = c(x, y);
output
.bound(y, 0, 64)
.compute_root()
.split(y, line, y, 2, TailStrategy::RoundUp)
.split(line, chunk, line, 32, TailStrategy::RoundUp);
c
.tile(x, y, xo, yo, x, y, 2, 2, TailStrategy::RoundUp)
.compute_at(output, line)
.store_at(output, chunk);
a
.tile(x, y, xo, yo, x, y, 2, 2, TailStrategy::RoundUp)
.compute_at(c, yo)
.store_at(output, chunk)
.fold_storage(y, 4) // <<-- this should be OK, but previously it sometimes wanted 6.
.align_bounds(y, 2);
Buffer<int> im = output.realize({64, 64});
}
printf("Success!\n");
return 0;
}
|