1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#include "Halide.h"
#include <stdio.h>
using namespace Halide;
void fill_buffer_a_bf16(Buffer<bfloat16_t> &buf, int row, int acc) {
for (int iy = 0; iy < row; ++iy) {
for (int ix = 0; ix < acc; ++ix) {
// value between 0 and 100
bfloat16_t val = bfloat16_t(((float)rand() / (float)(RAND_MAX)) * 100.f);
buf(ix, iy) = val;
}
}
}
void fill_buffer_b_bf16(Buffer<bfloat16_t> &buf, int col, int acc) {
for (int iy = 0; iy < acc / 2; ++iy) {
for (int ix = 0; ix < col; ++ix) {
for (int ik = 0; ik < 2; ++ik) {
bfloat16_t val = bfloat16_t(((float)rand() / (float)(RAND_MAX)) * 100.f);
buf(ik, ix, iy) = val;
}
}
}
}
template<typename IntT>
void fill_buffer_a(Buffer<IntT> &buf, int row, int acc) {
for (int iy = 0; iy < row; iy++) {
for (int ix = 0; ix < acc; ix++) {
buf(ix, iy) = rand() % 256 + std::numeric_limits<IntT>::min();
}
}
}
template<typename IntT>
void fill_buffer_b(Buffer<IntT> &buf, int col, int acc) {
for (int iy = 0; iy < acc / 4; iy++) {
for (int ix = 0; ix < col; ix++) {
for (int ik = 0; ik < 4; ++ik) {
buf(ik, ix, iy) = rand() % 256 + std::numeric_limits<IntT>::min();
}
}
}
}
bool equal_eps(float lhs, float rhs, float eps) {
return std::abs(lhs - rhs) < eps;
}
struct make_uint_t {
template<typename... Args>
Type operator()(Args &&...args) const {
return UInt(static_cast<Args &&>(args)...);
}
};
struct make_int_t {
template<typename... Args>
Type operator()(Args &&...args) const {
return Int(static_cast<Args &&>(args)...);
}
};
template<typename T>
void print_mat(const Buffer<T> &buf, int rows, int cols) {
using cast_T = std::conditional_t<std::is_integral_v<T>, int, T>;
for (int j = 0; j != rows; ++j) {
for (int i = 0; i != cols; ++i) {
std::cout << static_cast<cast_T>(buf(i, j)) << " ";
}
std::cout << std::endl;
}
}
template<typename T>
void print_mat_rhs(const Buffer<T> &buf, int rows, int cols) {
using cast_T = std::conditional_t<std::is_integral_v<T>, int, T>;
for (int j = 0; j != (rows / (4 / sizeof(T))); ++j) {
for (int k = 0; k != (4 / sizeof(T)); ++k) {
for (int i = 0; i != cols; ++i) {
std::cout << static_cast<cast_T>(buf(k, i, j)) << " ";
}
std::cout << std::endl;
}
}
}
template<typename LhsInt8, typename RhsInt8>
bool matmul(int row, int col, int acc, int tile_x, int tile_y, int tile_r) {
Buffer<LhsInt8> A_buf(acc, row);
Buffer<RhsInt8> B_buf(4, col, acc / 4);
Var x("x"), y("y");
RDom r(0, acc);
Func mm("matmul");
mm(x, y) = cast<int32_t>(0);
mm(x, y) += cast<int32_t>(A_buf(r, y)) * cast<int32_t>(B_buf(r % 4, x, r / 4));
Var rxi("rxi"), ryi("ryi");
RVar rri("rri"), rro("rro");
mm.compute_at(mm.in(), x)
.store_in(MemoryType::AMXTile)
.update()
.tile(x, y, rxi, ryi, tile_x, tile_y, TailStrategy::GuardWithIf)
.split(r, rro, rri, tile_r)
.reorder(rri, rxi, ryi, rro, x, y)
.atomic()
.vectorize(rri)
.vectorize(rxi)
.vectorize(ryi);
Var ixi("ixi"), iyi("iyi");
mm.compute_at(mm.in(), x)
.tile(x, y, ixi, iyi, tile_x, tile_y)
.vectorize(ixi)
.vectorize(iyi);
// schedule the consumer
Var mmxi("mmxi"), mmyi("mmyi");
mm.in()
.tile(x, y, mmxi, mmyi, tile_x, tile_y)
.vectorize(mmxi)
.vectorize(mmyi);
Func result = mm.in();
fill_buffer_a(A_buf, row, acc);
fill_buffer_b(B_buf, col, acc);
Buffer<int32_t> out(col, row);
result.realize(out);
// uncomment to check the matrices
// std::cout << "Matrix A\n";
// print_mat(A_buf, row, acc);
// std::cout << "Matrix B\n";
// print_mat_rhs(B_buf, acc, col);
// std::cout << "result\n";
// print_mat(out, row, col);
for (int j = 0; j < row; ++j) {
for (int i = 0; i < col; ++i) {
int32_t val = 0;
for (int k = 0; k < acc; ++k) {
val += static_cast<int32_t>(A_buf(k, j)) * static_cast<int32_t>(B_buf(k % 4, i, k / 4));
}
if (val != out(i, j)) {
std::cerr << "Invalid result at " << i << ", " << j << "\n"
<< out(i, j) << " != " << val << "\n"
<< "Matrix dims: " << row << "x" << col << "x" << acc << "\nTile dims: " << tile_x << "x" << tile_y << "x" << tile_r << "\n";
return false;
}
}
}
std::cout << "Success!\n";
return true;
}
bool matmul_bf16(int row, int col, int acc, int tile_x, int tile_y, int tile_r) {
Var x("x"), y("y");
Buffer<bfloat16_t> A(acc, row);
Buffer<bfloat16_t> B(2, col, acc / 2);
RDom r(0, acc, "acc");
Func mm("matmul");
mm(x, y) = cast<float>(0);
mm(x, y) += cast<float>(cast<float>(A(r.x, y))) * cast<float>(B(r.x % 2, x, r.x / 2));
Var rxi("rxi"), ryi("ryi");
RVar rri("rri"), rro("rro");
mm.compute_at(mm.in(), x)
.store_in(MemoryType::AMXTile)
.update()
.tile(x, y, rxi, ryi, tile_x, tile_y, TailStrategy::GuardWithIf)
.split(r.x, rro, rri, tile_r)
.reorder({rri, rxi, ryi, rro, x, y})
.atomic()
.vectorize(rri)
.vectorize(rxi)
.vectorize(ryi);
Var ixi("ixi"), iyi("iyi");
mm.compute_at(mm.in(), x)
.tile(x, y, ixi, iyi, tile_x, tile_y)
.vectorize(ixi)
.vectorize(iyi);
// schedule the consumer
Var mmxi("mmxi"), mmyi("mmyi");
mm.in()
.tile(x, y, mmxi, mmyi, tile_x, tile_y)
.vectorize(mmxi)
.vectorize(mmyi);
Func result = mm.in();
fill_buffer_a_bf16(A, row, acc);
fill_buffer_b_bf16(B, col, acc);
Buffer<float> out(col, row);
// Uncomment to check the asm
// result.compile_to_llvm_assembly(Internal::get_test_tmp_dir() + "tiled_matmul_bf16.ll", {A, B}, target);
// result.compile_to_assembly(Internal::get_test_tmp_dir() + "tiled_matmul.s", {A, B}, target);
result.realize(out);
// uncomment to check the matrices
// std::cout << "Matrix A\n";
// print_mat(A, row, acc);
// std::cout << "Matrix B\n";
// print_mat_rhs(B, acc, col);
// std::cout << "result\n";
// print_mat(out, row, col);
for (int j = 0; j < row; ++j) {
for (int i = 0; i < col; ++i) {
float val = 0.f;
for (int k = 0; k < acc; ++k) {
val += static_cast<float>(A(k, j)) * static_cast<float>(B(k % 2, i, k / 2));
}
if (!equal_eps(val, out(i, j), 0.03f)) {
std::cerr << "Invalid result at " << i << ", " << j << "\n"
<< out(i, j) << " != " << val << "\n"
<< "Matrix dims: " << row << "x" << col << "x" << acc << "\nTile dims: " << tile_x << "x" << tile_y << "x" << tile_r << "\n";
return false;
}
}
}
std::cout << "Success!\n";
return true;
}
auto matmul_ss = &matmul<int8_t, int8_t>;
auto matmul_us = &matmul<uint8_t, int8_t>;
auto matmul_su = &matmul<int8_t, uint8_t>;
auto matmul_uu = &matmul<uint8_t, uint8_t>;
bool run_tests(bool (*fn)(int, int, int, int, int, int), int element_width) {
return fn(2, 2, 16, 2, 2, 8 / element_width) && fn(4, 4, 8, 4, 4, 8 / element_width) && fn(32, 32, 32, 8, 8, 8 / element_width) && fn(32, 32, 32, 8, 8, 4 / element_width);
}
int main(int argc, char **argv) {
Target t = get_jit_target_from_environment();
if (!t.has_feature(Target::AVX512_SapphireRapids)) {
printf("[SKIP] No AMX target enabled\n");
return 0;
}
printf("Running AMX matmul (signed/signed)\n");
if (!run_tests(matmul_ss, 1)) {
return 1;
}
printf("Running AMX matmul (signed/unsigned)\n");
if (!run_tests(matmul_su, 1)) {
return 1;
}
printf("Running AMX matmul (unsigned/signed)\n");
if (!run_tests(matmul_us, 1)) {
return 1;
}
printf("Running AMX matmul (unsigned/unsigned)\n");
if (!run_tests(matmul_uu, 1)) {
return 1;
}
printf("Running AMX matmul (bf16)\n");
if (!run_tests(matmul_bf16, 2)) {
return 1;
}
return 0;
}
|