1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
#include "Halide.h"
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
Var x{"x"};
{
// Compute fibonacci:
Func f1;
RDom r(2, 100);
// Pure definition
f1(x) = 0;
// Update rule
f1(r) = f1(r - 1) + f1(r - 2);
Buffer<int> fib1 = f1.realize({102});
// That code needlessly set the entire buffer to zero before
// computing fibonacci. We know for our use of fibonacci that
// we'll never ask for values that haven't been set by the update
// step, except for entires 0 and 1. But Halide can't prove this,
// because a user may realize fib over a negative region, or
// beyond 102.
// Now we'll compute fibonacci without initializing all the
// entries first. This promises that we don't care about values
// outside of the range written by the update steps, and that all
// values recursively read by an update step have been previously
// written by an earlier update step.
Func f2;
// This line just serves to name the pure variable (x) and define
// the type of the function (int).
f2(x) = undef<int>();
// This actually turns into code:
f2(0) = 0;
f2(1) = 0;
f2(r) = f2(r - 1) + f2(r - 2);
Buffer<int> fib2 = f2.realize({102});
int err = evaluate_may_gpu<int>(maximum(fib1(r) - fib2(r)));
if (err > 0) {
printf("Failed\n");
return 1;
}
}
{
// Now use undef in a tuple. The following code ping-pongs between the two tuple components using a stencil:
RDom rx(0, 100);
Func f3;
f3(x) = Tuple(undef<float>(), sin(x));
Expr left = max(rx - 1, 0);
Expr right = min(rx + 1, 99);
for (int i = 0; i < 10; i++) {
f3(rx) = Tuple((f3(rx)[1] + f3(left)[1] + f3(right)[1]) / 3, undef<float>());
f3(rx) = Tuple(undef<float>(), (f3(rx)[0] + f3(left)[0] + f3(right)[0]) / 3);
}
Buffer<float> o1(100), o2(100);
o1.fill(17);
o2.fill(18);
f3.realize({o1, o2});
for (int i = 0; i < 100; i++) {
if (std::abs(o1(i)) > 1 || std::abs(o2(i)) > 1) {
printf("Output outside of [-1, 1]: o1(%d) = %f, o2(%d) = %f\n", i, o1(i), i, o2(i));
return 1;
}
}
}
{
// From https://github.com/halide/Halide/issues/8667
Var x{"x"};
Func f{"f"}, g{"g"};
// f is undef away from zero
f(x) = select(x == 0, x + 1, undef<int>());
// g is undef outside of [0, 1]
g(x) = select(x == 0, f(x), -f(1 - x));
Buffer<int> output(4);
output.fill(17);
g.realize(output);
int expected[4] = {1, -1, 17, 17};
for (int i = 0; i < 4; i++) {
if (expected[i] != output(i)) {
printf("Mismatch at index %d: expected %d, got %d\n", i, expected[i], output(i));
return 1;
}
}
}
printf("Success!\n");
return 0;
}
|