1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
#include "Halide.h"
#include "fuzz_helpers.h"
#include <functional>
#include <fuzzer/FuzzedDataProvider.h>
#include <time.h>
using namespace Halide;
using namespace Halide::ConciseCasts;
using namespace Halide::Internal;
using std::pair;
using std::vector;
// Note that this deliberately uses int16 values everywhere --
// *not* int32 -- because we want to test CSE, not the simplifier's
// overflow behavior, and using int32 can end up with results
// containing signed_integer_overflow(), which is not helpful here.
Expr random_expr(FuzzedDataProvider &fdp, int depth, vector<pair<Expr, int>> &exprs) {
if (depth <= 0) {
return i16(fdp.ConsumeIntegralInRange<int>(-5, 4));
}
if (!exprs.empty() && fdp.ConsumeBool()) {
// Reuse an existing expression that was generated under conditions at
// least as strict as our current depth limit.
auto p = pick_value_in_vector(fdp, exprs);
if (p.second <= depth) {
return p.first;
}
}
std::function<Expr()> build_next_expr[] = {
[&]() {
// Can't use Var() here because that would require i32 values,
// which we are avoiding here because we don't want to end
// up with signed_integer_overflow()
return Variable::make(Int(16), "x");
},
[&]() {
return Variable::make(Int(16), "y");
},
[&]() {
return Variable::make(Int(16), "z");
},
[&]() {
Expr next = random_expr(fdp, depth - 1, exprs);
next += random_expr(fdp, depth - 1, exprs);
return next;
},
[&]() {
Expr a = random_expr(fdp, depth - 2, exprs);
Expr b = random_expr(fdp, depth - 2, exprs);
Expr c = random_expr(fdp, depth - 2, exprs);
Expr d = random_expr(fdp, depth - 2, exprs);
return select(a > b, c, d);
},
[&]() {
Expr a = random_expr(fdp, depth - 1, exprs);
Expr b = random_expr(fdp, depth - 1, exprs);
return i16(Let::make("x", a, b));
},
[&]() {
Expr a = random_expr(fdp, depth - 1, exprs);
Expr b = random_expr(fdp, depth - 1, exprs);
return i16(Let::make("y", a, b));
},
[&]() {
Expr a = random_expr(fdp, depth - 1, exprs);
Expr b = random_expr(fdp, depth - 1, exprs);
return i16(Let::make("z", a, b));
},
[&]() {
return i16(fdp.ConsumeIntegralInRange<int>(-5, 4));
},
};
Expr next = fdp.PickValueInArray(build_next_expr)();
exprs.emplace_back(next, depth);
return next;
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
FuzzedDataProvider fdp(data, size);
vector<pair<Expr, int>> exprs;
Expr orig = random_expr(fdp, 5, exprs);
Expr csed = common_subexpression_elimination(orig);
Expr check = (orig == csed);
check = Let::make("x", i16(1), check);
check = Let::make("y", i16(2), check);
check = Let::make("z", i16(3), check);
Stmt check_stmt = uniquify_variable_names(Evaluate::make(check));
check = check_stmt.as<Evaluate>()->value;
// Don't use can_prove, because it recursively calls cse, which just confuses matters.
Expr result = simplify(check);
assert(is_const_one(result));
return 0;
}
|