1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
#include "Halide.h"
#include "halide_benchmark.h"
#include <cstdio>
using namespace Halide;
using namespace Halide::Tools;
int main(int argc, char **argv) {
Target target = get_jit_target_from_environment();
if (target.arch == Target::WebAssembly) {
printf("[SKIP] Performance tests are meaningless and/or misleading under WebAssembly interpreter.\n");
return 0;
}
if (target.arch == Target::ARM &&
target.os == Target::OSX) {
// vrecpe, vrecps, fmul have inverse throughputs of 1, 0.25, 0.25
// respectively, while fdiv has inverse throughput of 1.
printf("[SKIP] Apple M1 chips have division performance roughly on par with the reciprocal instruction\n");
return 0;
}
Func slow, fast;
Var x;
Param<float> p(1.0f);
const int N = 10000000;
// Compute the golden mean using a continued fraction.
RDom r(0, N);
slow(x) = 1.0f;
fast(x) = 1.0f;
slow(x) = p / (slow(x) + 1) + 0 * r;
fast(x) = fast_inverse((fast(x) + 1) + 0 * r);
// Use wide vectors to ensure we're throughput-limited rather than latency-limited.
const int vec = 32;
slow.update().vectorize(x, vec);
fast.update().vectorize(x, vec);
slow.compile_jit();
fast.compile_jit();
Buffer<float> out_fast(vec), out_slow(vec);
double slow_time = benchmark([&]() { slow.realize(out_slow); });
double fast_time = benchmark([&]() { fast.realize(out_fast); });
slow_time *= 1e9 / (out_fast.width() * N);
fast_time *= 1e9 / (out_fast.width() * N);
if (fabs(out_fast(0) - out_slow(0)) > 1e-5) {
printf("Mismatched answers:\n"
"fast: %10.10f\n"
"slow: %10.10f\n",
out_fast(0), out_slow(0));
return 1;
}
printf("True inverse: %f ns\n"
"Fast inverse: %f ns\n",
slow_time, fast_time);
if (fast_time > slow_time) {
printf("Fast inverse is slower than true division.\n");
return 1;
}
printf("Success!\n");
return 0;
}
|