1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
#include "Halide.h"
#include "halide_benchmark.h"
#include <cstdio>
#include <functional>
#include <thread>
/** \file Test to demonstrate using JIT across multiple threads with
* varying parameters passed to realizations. Performance is tested
* by comparing a technique that recompiles vs one that should not.
*/
using namespace Halide;
using namespace Halide::Tools;
struct test_func {
Param<int32_t> p;
ImageParam in{Int(32), 1};
Func func;
Var x;
std::function<int(Buffer<int32_t, 1>, int32_t, Buffer<int32_t, 1>)> f;
test_func() {
Expr big = 0;
for (int i = 0; i < 75; i++) {
big += p;
}
Func inner;
inner(x) = x * in(clamp(x, 0, 9)) + big;
func(x) = inner(x - 1) + inner(x) + inner(x + 1);
inner.compute_at(func, x);
// The Halide compiler is threadsafe, with the important caveat
// that mutable objects like Funcs and ImageParams cannot be
// shared across thread boundaries without being guarded by a
// mutex. Since we don't share any such objects here, we don't
// need any synchronization
f = func.compile_to_callable({in, p}).make_std_function<Buffer<int32_t, 1>, int32_t, Buffer<int32_t, 1>>();
}
test_func(const test_func ©) = delete;
test_func &operator=(const test_func &) = delete;
test_func(test_func &&) = delete;
test_func &operator=(test_func &&) = delete;
};
Buffer<int32_t> bufs[16];
void separate_func_per_thread_executor(int index) {
test_func test;
Buffer<int32_t> output(10);
for (int i = 0; i < 10; i++) {
int result = test.f(bufs[index], index, output);
assert(result == 0);
for (int j = 0; j < 10; j++) {
int64_t left = ((j - 1) * (int64_t)bufs[index](std::min(std::max(0, j - 1), 9)) + index * 75);
int64_t middle = (j * (int64_t)bufs[index](std::min(std::max(0, j), 9)) + index * 75);
int64_t right = ((j + 1) * (int64_t)bufs[index](std::min(std::max(0, j + 1), 9)) + index * 75);
assert(output(j) == (int32_t)(left + middle + right));
}
}
}
void separate_func_per_thread() {
std::thread threads[16];
for (auto &thread : threads) {
thread = std::thread(separate_func_per_thread_executor,
(int)(&thread - threads));
}
for (auto &thread : threads) {
thread.join();
}
}
void same_func_per_thread_executor(int index, test_func &test) {
Buffer<int32_t> output(10);
for (int i = 0; i < 10; i++) {
int result = test.f(bufs[index], index, output);
assert(result == 0);
for (int j = 0; j < 10; j++) {
int64_t left = ((j - 1) * (int64_t)bufs[index](std::min(std::max(0, j - 1), 9)) + index * 75);
int64_t middle = (j * (int64_t)bufs[index](std::min(std::max(0, j), 9)) + index * 75);
int64_t right = ((j + 1) * (int64_t)bufs[index](std::min(std::max(0, j + 1), 9)) + index * 75);
assert(output(j) == (int32_t)(left + middle + right));
}
}
}
void same_func_per_thread() {
std::thread threads[16];
test_func test;
for (auto &thread : threads) {
thread = std::thread(same_func_per_thread_executor,
(int)(&thread - threads), std::ref(test));
}
for (auto &thread : threads) {
thread.join();
}
}
int main(int argc, char **argv) {
Target target = get_jit_target_from_environment();
if (target.arch == Target::WebAssembly) {
printf("[SKIP] Performance tests are meaningless and/or misleading under WebAssembly interpreter.\n");
return 0;
}
for (auto &buf : bufs) {
buf = Buffer<int32_t>(10);
for (int i = 0; i < 10; i++) {
buf(i) = std::rand();
}
}
double separate_time = benchmark(separate_func_per_thread);
printf("Separate compilations time: %fs.\n", separate_time);
double same_time = benchmark(same_func_per_thread);
printf("One compilation time: %fs.\n", same_time);
assert(same_time < separate_time);
printf("Success!\n");
return 0;
}
|