File: tiled_matmul.cpp

package info (click to toggle)
halide 21.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,752 kB
  • sloc: cpp: 289,334; ansic: 22,751; python: 7,486; makefile: 4,299; sh: 2,508; java: 1,549; javascript: 282; pascal: 207; xml: 127; asm: 9
file content (256 lines) | stat: -rw-r--r-- 7,409 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "Halide.h"
#include "halide_benchmark.h"
#include "halide_test_dirs.h"

#include <iomanip>
#include <iostream>

using namespace Halide;

void fill_buffer_a_bf16(Buffer<bfloat16_t> &buf, int row, int acc) {
    for (int iy = 0; iy < row; ++iy) {
        for (int ix = 0; ix < acc; ++ix) {
            // value between 0 and 100
            bfloat16_t val = bfloat16_t(((float)rand() / (float)(RAND_MAX)) * 100.f);
            buf(ix, iy) = val;
        }
    }
}

void fill_buffer_b_bf16(Buffer<bfloat16_t> &buf, int col, int acc) {
    for (int iy = 0; iy < acc / 2; ++iy) {
        for (int ix = 0; ix < col; ++ix) {
            for (int ik = 0; ik < 2; ++ik) {
                bfloat16_t val = bfloat16_t(((float)rand() / (float)(RAND_MAX)) * 100.f);
                buf(ik, ix, iy) = val;
            }
        }
    }
}

struct make_uint_t {
    template<typename... Args>
    Type operator()(Args &&...args) const {
        return UInt(static_cast<Args &&>(args)...);
    }
};

struct make_int_t {
    template<typename... Args>
    Type operator()(Args &&...args) const {
        return Int(static_cast<Args &&>(args)...);
    }
};

template<typename IntT>
void fill_buffer_a(Buffer<IntT> &buf, int row, int acc) {
    for (int iy = 0; iy < row; iy++) {
        for (int ix = 0; ix < acc; ix++) {
            buf(ix, iy) = rand() % 256 + std::numeric_limits<IntT>::min();
        }
    }
}

template<typename IntT>
void fill_buffer_b(Buffer<IntT> &buf, int col, int acc) {
    for (int iy = 0; iy < acc / 4; iy++) {
        for (int ix = 0; ix < col; ix++) {
            for (int ik = 0; ik < 4; ++ik) {
                buf(ik, ix, iy) = rand() % 256 + std::numeric_limits<IntT>::min();
            }
        }
    }
}

template<typename LhsInt8, typename RhsInt8>
bool matmul(Halide::Target target) {
    // used for compiling to llvm IR or asm
    (void)target;

    constexpr bool lhs_signed = std::is_signed<LhsInt8>::value;
    constexpr bool rhs_signed = std::is_signed<RhsInt8>::value;

    auto lhs = typename std::conditional<lhs_signed, make_int_t, make_uint_t>::type{};
    auto rhs = typename std::conditional<rhs_signed, make_int_t, make_uint_t>::type{};

    const int row = 16;
    const int col = 16;
    const int acc = 16;

    Var x("x"), y("y");
    ImageParam A(lhs(8), 2, "lhs");
    // NB the RHS matrix in AMX instructions should be tiled in "VNNI format",
    // where instead of being (cols, rows) where rows are adjacent in memory it
    // should be (4, cols, rows / 4) for int8, or (2, cols, rows / 2) for bf16.
    // This means that the rows must always be divisible by 4 (or 2 for bf16).
    ImageParam B(rhs(8), 3, "rhs");

    RDom r(0, acc);

    Func mm("matmul");
    mm(y, x) = cast<int32_t>(0);
    mm(y, x) += cast<int32_t>(A(r.x, x)) * B(r.x % 4, y, r.x / 4);

    // Ensure all (x, y) tile sizes are the same so that loops are fused.
    int tile_y = 8;
    int tile_x = 6;
    int tile_r = 4;

    // Schedule the reduction
    Var rxi("rxi"), ryi("ryi");
    RVar rri("rri"), rro("rro");
    mm.compute_at(mm.in(), y)
        .store_in(MemoryType::AMXTile)
        .update()
        // Split into (x,y) tile
        .tile(y, x, ryi, rxi, tile_y, tile_x, TailStrategy::GuardWithIf)
        // Split reduction dim by tile_r
        .split(r.x, rro, rri, tile_r)
        // Reorder so that the (x,y) tile is inside the inner ro loop
        .reorder({rri, ryi, rxi, rro, y, x})
        .atomic()
        .vectorize(rri)
        .vectorize(ryi)
        .vectorize(rxi);

    // Schedule the initialization
    Var ixi("ixi"), iyi("iyi");
    mm.compute_at(mm.in(), y)
        .tile(y, x, iyi, ixi, tile_y, tile_x)
        .vectorize(iyi)
        .vectorize(ixi);

    // Schedule the consumer
    Var mmxi("mmxi"), mmyi("mmyi");
    mm.in()
        .tile(y, x, mmyi, mmxi, tile_y, tile_x)
        .vectorize(mmyi)
        .vectorize(mmxi);

    Buffer<LhsInt8> a_buf(acc, row);
    fill_buffer_a(a_buf, row, acc);
    A.set(a_buf);

    Buffer<RhsInt8> b_buf(4, col, acc / 4);
    fill_buffer_b(b_buf, col, acc);
    B.set(b_buf);

    Buffer<int32_t> out(col, row);

    Func result = mm.in();

    // Uncomment to check the asm
    // result.compile_to_llvm_assembly(Internal::get_test_tmp_dir() + "tiled_matmul.ll", {A, B}, target);
    // result.compile_to_assembly(Internal::get_test_tmp_dir() + "tiled_matmul.s", {A, B}, target);

    auto time = Tools::benchmark(20, 20, [&]() {
        result.realize(out);
    });
    std::cout << "Exec time: " << time << "\n";
    std::cout << "Success!\n";
    return true;
}

auto matmul_ss = &matmul<int8_t, int8_t>;
auto matmul_us = &matmul<uint8_t, int8_t>;
auto matmul_su = &matmul<int8_t, uint8_t>;
auto matmul_uu = &matmul<uint8_t, uint8_t>;

bool equal_eps(float lhs, float rhs, float eps) {
    return std::abs(lhs - rhs) < eps;
}

bool matmul_bf16(Halide::Target target) {
    (void)target;

    // lhs: 32x16, rhs: 16x32
    const int row = 32;
    const int col = 32;
    const int acc = 16;

    Var x("x"), y("y");
    ImageParam A(BFloat(16), 2, "lhs");
    ImageParam B(BFloat(16), 3, "rhs");

    RDom r(0, acc, "acc");

    Func mm("matmul");
    mm(x, y) = cast<float>(0);
    mm(x, y) += cast<float>(cast<float>(A(r.x, y))) * cast<float>(B(r.x % 2, x, r.x / 2));

    int tile_x = 8;
    int tile_y = 8;
    int tile_r = 2;

    Var rxi("rxi"), ryi("ryi");
    RVar rri("rri"), rro("rro");

    mm.compute_at(mm.in(), x)
        .store_in(MemoryType::AMXTile)
        .update()
        .tile(x, y, rxi, ryi, tile_x, tile_y, TailStrategy::GuardWithIf)
        .split(r.x, rro, rri, tile_r)
        .reorder({rri, rxi, ryi, rro, x, y})
        .atomic()
        .vectorize(rri)
        .vectorize(rxi)
        .vectorize(ryi);

    Var ixi("ixi"), iyi("iyi");
    mm.compute_at(mm.in(), x)
        .tile(x, y, ixi, iyi, tile_x, tile_y)
        .vectorize(ixi)
        .vectorize(iyi);

    // schedule the consumer
    Var mmxi("mmxi"), mmyi("mmyi");
    mm.in()
        .tile(x, y, mmxi, mmyi, tile_x, tile_y)
        .vectorize(mmxi)
        .vectorize(mmyi);

    Func result = mm.in();

    Buffer<bfloat16_t> a_buf(acc, row);
    fill_buffer_a_bf16(a_buf, row, acc);
    A.set(a_buf);

    Buffer<bfloat16_t> b_buf(2, col, acc / 2);
    fill_buffer_b_bf16(b_buf, col, acc);
    B.set(b_buf);

    Buffer<float> out(col, row);

    // Uncomment to check the asm
    // result.compile_to_llvm_assembly(Internal::get_test_tmp_dir() + "tiled_matmul_bf16.ll", {A, B}, target);
    // result.compile_to_assembly(Internal::get_test_tmp_dir() + "tiled_matmul.s", {A, B}, target);

    auto time = Tools::benchmark(20, 20, [&]() {
        result.realize(out);
    });

    std::cout << "Exec time: " << time << "\n";
    std::cout << "Success!\n";
    return true;
}

int main(int argc, char **argv) {
    Target target = get_jit_target_from_environment();
    if (!target.has_feature(Target::AVX512_SapphireRapids)) {
        std::cout << "[SKIP] The tiled matmul test is only designed to test AMX support.\n";
        return 0;
    }

    printf("Running AMX (signed/signed)\n");
    matmul_ss(target);
    printf("Running AMX (unsigned/signed)\n");
    matmul_us(target);
    printf("Running AMX (signed/unsigned)\n");
    matmul_su(target);
    printf("Running AMX (unsigned/unsigned)\n");
    matmul_uu(target);

    printf("Running AMX (bf16)\n");
    matmul_bf16(target);
    return 0;
}