1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
#include <algorithm>
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
int64_t r(int64_t min, int64_t max) {
int64_t n1 = rand();
int64_t n2 = rand();
int64_t n3 = rand();
n1 = n1 ^ (n2 << 16) ^ (n3 << 16);
n1 = n1 % (max - min);
n1 = n1 + min;
return n1;
}
int64_t sdiv(int64_t a, int64_t b) {
return (a - ((a % b) + b) % b) / b;
}
int64_t srzdiv(int64_t a, int64_t b) {
return a / b;
}
bool u_method_0(int den, int sh_post, int bits) {
uint64_t max = (1L << bits) - 1;
for (int64_t num = 0; num <= max; num++) {
uint64_t result = num;
result >>= sh_post;
if (num / den != result) return false;
}
return true;
}
bool u_method_1(int den, int64_t mul, int sh_post, int bits) {
uint64_t max = (1L << bits) - 1;
if (mul > max) return false;
for (uint64_t num = 0; num <= max; num++) {
uint64_t result = num;
result *= mul;
result >>= bits;
if (result > max) return false;
result >>= sh_post;
if (num / den != result) return false;
}
return true;
}
bool u_method_2(int den, int64_t mul, int sh_post, int bits) {
uint64_t max = (1UL << bits) - 1;
if (mul > max) return false;
for (uint64_t num = 0; num <= max; num++) {
uint64_t result = num;
result *= mul;
result >>= bits;
if (result > max) return false;
result = (result + num) >> 1;
if (result > max) return false;
result >>= sh_post;
if (num / den != result) return false;
}
return true;
}
bool u_method_3(int den, int64_t mul, int sh_post, int bits) {
uint64_t max = (1UL << bits) - 1;
if (mul > max) return false;
for (uint64_t num = 0; num <= max; num++) {
uint64_t result = num;
result *= mul;
result >>= bits;
if (result > max) return false;
result = (result + num + 1) >> 1;
if (result > max) return false;
result >>= sh_post;
if (num / den != result) return false;
}
return true;
}
bool s_method_0(int den, int sh_post, int bits) {
int64_t min = -(1L << (bits - 1)), max = (1L << (bits - 1)) - 1;
for (int64_t num = min; num <= max; num++) {
int64_t result = num;
result >>= sh_post;
if (sdiv(num, den) != result) return false;
}
return true;
}
bool s_method_1(int den, int64_t mul, int sh_post, int bits) {
int64_t min = -(1 << (bits - 1)), max = (1 << (bits - 1)) - 1;
for (int64_t num = min; num <= max; num++) {
int64_t result = num;
uint64_t xsign = result >> (bits - 1);
uint64_t q0 = (mul * (xsign ^ result)) >> bits;
result = xsign ^ (q0 >> sh_post);
if (sdiv(num, den) != result) return false;
}
return true;
}
bool srz_method_0(int den, int sh_post, int bits) {
int64_t min = -(1L << (bits - 1)), max = (1L << (bits - 1)) - 1;
for (int64_t num = min; num <= max; num++) {
int64_t result = num;
result += (result >> (bits - 1)) & (den - 1);
result >>= sh_post;
if (srzdiv(num, den) != result) return false;
}
return true;
}
bool srz_method_1(int den, int64_t mul, int sh_post, int bits) {
int64_t min = -(1 << (bits - 1)), max = (1 << (bits - 1)) - 1;
for (int64_t num = min; num <= max; num++) {
int64_t result = num;
uint64_t xsign = result >> (bits - 1);
uint64_t q0 = (mul * result) >> bits;
result = (q0 >> sh_post);
uint64_t mask = (1ULL << bits) - 1;
result -= (xsign & mask);
// Fix-up the sign bits
result <<= (64 - bits);
result >>= (64 - bits);
if (srzdiv(num, den) != result) {
printf("Fail\n");
return false;
}
}
return true;
}
int main(int argc, char **argv) {
/* This program computes a table to help us do cheap integer
division by a constant. It is based on the paper "Division by
Invariant Integers using Multiplication" by Granlund and
Montgomery.
*/
FILE *c_out = fopen("IntegerDivisionTable.cpp", "w");
FILE *h_out = fopen("IntegerDivisionTable.h", "w");
fprintf(h_out, "%s",
"#ifndef HALIDE_INTEGER_DIVISION_TABLE_H\n"
"#define HALIDE_INTEGER_DIVISION_TABLE_H\n"
"\n"
"#include <cstdint>\n"
"\n"
"/** \\file\n"
" * Tables telling us how to do integer division via fixed-point\n"
" * multiplication for various small constants. This file is \n"
" * automatically generated by find_inverse.cpp.\n"
" */\n"
"namespace Halide {\n"
"namespace Internal {\n"
"namespace IntegerDivision {\n");
fprintf(c_out, "%s",
"/** \\file\n"
" * Tables telling us how to do integer division\n"
" * via fixed-point multiplication for various small\n"
" * constants. This file is automatically generated\n"
" * by find_inverse.cpp. There are two sets of tables.\n"
" * The first set is for compile-time-constant divisors\n"
" * from 2 to 256. The second is for runtime divisors\n"
" * from 1 to 255. The second set always uses the most\n"
" * expensive method, while the compile-time set uses\n"
" * the cheapest method for the given divisor.\n"
" */\n"
"\n"
"#include \"IntegerDivisionTable.h\"\n"
"\n"
"namespace Halide {\n"
"namespace Internal {\n"
"namespace IntegerDivision {\n\n");
for (int runtime = 0; runtime < 2; runtime++) {
for (int bits = 8; bits <= 32; bits *= 2) {
printf("Generating table%s_u%d...\n", runtime ? "_runtime" : "", bits);
if (runtime) {
fprintf(h_out, "extern const int64_t table_runtime_u%d[256][4];\n", bits);
fprintf(c_out, "const int64_t table_runtime_u%d[256][4] = {\n", bits);
} else {
fprintf(h_out, "extern const int64_t table_u%d[256][4];\n", bits);
fprintf(c_out, "const int64_t table_u%d[256][4] = {\n", bits);
}
for (int d = 0; d < 256; d++) {
if (runtime && d < 2) {
fprintf(c_out, " {0, 0, 0, 0}, // unused\n");
continue;
}
int den = d;
if (den == 0) den = 256;
if (!runtime) {
for (int shift = 0; shift < 16; shift++) {
if (u_method_0(den, shift, bits)) {
fprintf(c_out, " {%d, 0, 0, %d},\n", den, shift);
goto next_unsigned;
}
}
for (int shift = 0; shift < 8; shift++) {
int64_t mul = (1L << (bits + shift)) / den + 1;
if (u_method_1(den, mul, shift, bits)) {
fprintf(c_out, " {%d, 1, %lldULL, %d},\n", den, (long long)mul, shift);
goto next_unsigned;
}
}
for (int shift = 0; shift < 8; shift++) {
int64_t mul = (1L << (bits + shift + 1)) / den - (1L << bits);
mul &= (1L << bits) - 1;
if (u_method_3(den, mul, shift, bits)) {
fprintf(c_out, " {%d, 3, %lldULL, %d},\n", den, (long long)mul, shift);
goto next_unsigned;
}
}
} else if (d == 1) {
// Runtime division by one is handled by a select
fprintf(c_out, " {1, 0, 0ULL, 0},\n");
goto next_unsigned;
}
{
int shift = 31 - __builtin_clz(den - 1);
int64_t mul = (1L << (bits + shift + 1)) / den - (1L << bits) + 1;
mul &= (1L << bits) - 1;
if (u_method_2(den, mul, shift, bits)) {
fprintf(c_out, " {%d, 2, %lldULL, %d},\n", den, (long long)mul, shift);
goto next_unsigned;
}
}
fprintf(c_out, "ERROR! No solution found for unsigned %d\n", den);
next_unsigned:;
}
fprintf(c_out, "};\n");
printf("Generating table%s_s%d...\n", runtime ? "_runtime" : "", bits);
if (runtime) {
fprintf(h_out, "extern const int64_t table_runtime_s%d[256][4];\n", bits);
fprintf(c_out, "const int64_t table_runtime_s%d[256][4] = {\n", bits);
} else {
fprintf(h_out, "extern const int64_t table_s%d[256][4];\n", bits);
fprintf(c_out, "const int64_t table_s%d[256][4] = {\n", bits);
}
for (int d = 0; d < 256; d++) {
if (runtime && d < 2) {
fprintf(c_out, " {0, 0, 0, 0}, // unused\n");
continue;
}
int den = d;
if (den == 0) den = 256;
if (!runtime) {
for (int shift = 0; shift < 8; shift++) {
if (s_method_0(den, shift, bits)) {
fprintf(c_out, " {%d, 0, 0, %d},\n", den, shift);
goto next_signed;
}
}
}
{
int shift = 31 - __builtin_clz(den - 1);
int64_t mul = (1L << (shift + bits)) / den + 1;
if (s_method_1(den, mul, shift, bits)) {
fprintf(c_out, " {%d, 1, %lldLL, %d},\n", den, (long long)mul, shift);
goto next_signed;
}
}
fprintf(c_out, "ERROR! No solution found for signed %d\n", den);
next_signed:;
}
fprintf(c_out, "};\n");
printf("Generating table%s_srz%d...\n", runtime ? "_runtime" : "", bits);
if (runtime) {
fprintf(h_out, "extern const int64_t table_runtime_srz%d[256][4];\n", bits);
fprintf(c_out, "const int64_t table_runtime_srz%d[256][4] = {\n", bits);
} else {
fprintf(h_out, "extern const int64_t table_srz%d[256][4];\n", bits);
fprintf(c_out, "const int64_t table_srz%d[256][4] = {\n", bits);
}
for (int d = 0; d < 256; d++) {
if (runtime && d < 2) {
fprintf(c_out, " {0, 0, 0, 0}, // unused\n");
continue;
}
int den = d;
if (den == 0) den = 256;
if (!runtime) {
for (int shift = 0; shift < 8; shift++) {
if (srz_method_0(den, shift, bits)) {
fprintf(c_out, " {%d, 0, 0, %d},\n", den, shift);
goto next_signedrz;
}
}
}
{
int shift = 31 - __builtin_clz(den - 1);
int64_t mul = (1L << (shift + bits)) / den + 1;
if (srz_method_1(den, mul, shift, bits)) {
fprintf(c_out, " {%d, 1, %lldLL, %d},\n", den, (long long)mul, shift);
goto next_signedrz;
}
}
fprintf(c_out, "ERROR! No solution found for signed %d\n", den);
next_signedrz:;
}
fprintf(c_out, "};\n");
}
}
fprintf(h_out, "}\n}\n}\n\n#endif\n");
fprintf(c_out, "}\n}\n}\n");
fclose(h_out);
fclose(c_out);
return 0;
}
|